A Catechism of the Steam Engine - Part 15
Library

Part 15

_A._--A good chimney of a land engine will produce a degree of exhaustion equal to from 1-1/2 to 2-1/2 inches of water. In locomotive boilers the exhaustion is in some cases equal to 12 or 13 inches of water, but from 3 to 6 inches is a more common proportion.

278. _Q._--And what force of blast is necessary to produce this exhaustion?

_A._--The amount varies in different engines, depending on the sectional area of the tubes and other circ.u.mstances. But on the average, it may be a.s.serted that such a pressure of blast as will support an inch of mercury, will maintain sufficient exhaustion in the smoke box to support an inch of water; and this ratio holds whether the exhaustion is little or great. To produce an exhaustion in the smoke box, therefore, of 6 inches of water, the waste steam would require to be of sufficient pressure to support a column of 6 inches of mercury, which is equivalent to a pressure of 3 lbs.

on the square inch.

279. _Q._--How is the force of the blast determined?

_A._--By the amount of contraction given to the mouth of the blast pipe, which is a pipe which conducts the waste steam from the cylinders and debouches at the foot of the chimney. If a strong blast be required, the mouth of this pipe requires to be correspondingly contracted, but such contraction throws a back pressure on the piston, and it is desirable to obtain the necessary draught with as little contraction of the blast pipe as possible. The blast pipe is generally a breeches pipe of which the legs join just before reaching the chimney; but it is better to join the two cylinders below, and to let a single pipe ascend to within 12 or 18 inches of the foot of the chimney. If made with too short a piece of pipe above the joining, the steam will be projected against each side of the chimney alternately, and the draught will be damaged and the chimney worn. The blast pipe should not be regularly tapered, but should be large in the body and gathered in at the mouth.

280. _Q._--Is a large and high chimney conducive to strength of draught in locomotives?

_A._--It has not been found to be so. A chimney of three or four times its own diameter in height appears to answer fully as well as a longer one; and it was found that when in an engine with 17 inch cylinders a chimney of 15-1/4 inches was subst.i.tuted for a chimney of 17-1/2 inches, a superior performance was the result. The chimney of a locomotive should have half the area of the tubes at the ferules, which is the most contracted part, and the blast orifice should have 1/10th of the area of the chimney. The sectional area of the tubes through the ferules should be as large as possible. Tubes without ferules it is found pa.s.s one fourth more air, and tubes with ferules only at the smoke box end pa.s.s one tenth more air than when there are ferules at both ends.

281. _Q._--Is the exhaustion produced by the blast as great in the fire box as in the smoke box?

_A._--Experiments have been made to determine this, and in few cases has it been found to be more than about half as great as ordinary speeds; but much depends on the amount of contraction in the tubes. In an experiment made with an engine having 147 tubes of 1-3/4 inches external diameter, and 13 feet 10 inches long, and with a fire grate having an area of 9-1/2 square feet, the exhaustion at all speeds was found to be three times greater in the smoke box than in the fire box. The exhaustion in the smoke box was generally equivalent to 12 inches of water, while in the fire box it was equivalent to only 4 inches of water; showing that 4 inches were required to draw the air through the grate and 8 inches through the tubes.

282. _Q._--What will be the increase of evaporation in a locomotive from a given increase of exhaustion?

_A._--The rate of evaporation in a locomotive or any other boiler will vary as the quant.i.ty of air pa.s.sing through the fire, and the quant.i.ty of air pa.s.sing through the fire will vary nearly as the square root of the exhaustion. With four times the exhaustion, therefore, there will be about twice the evaporation, and experiment shows that this theoretical law holds with tolerable accuracy in practice.

283. _Q._--But the same exhaustion will not be produced by a given strength of blast in all engines?

_A._--No; engines with contracted fire grates and an inadequate sectional area of tubes, will require a stronger blast than engines of better proportions; but in any given engine the relations between the blast exhaustion and evaporation, hold which have been already defined.

284. _Q._--Is the intensity of the draught under easy regulation?

_A._--The intensity of the draught may easily be diminished by partially closing the damper in the chimney, and it may be increased by contracting the orifice of the blast. A variable blast pipe, the orifice of which may be enlarged or contracted at pleasure, has been much used. There are various devices for this purpose, but the best appears to be that adopted in Stephenson's engine, where a conical nozzle is moved up or down within the blast pipe, which is made somewhat larger in diameter than the base of the cone, but with a ring projecting internally, against which the base of the cone abuts when the nozzle is pushed up. When the nozzle stands at the top of the pipe the whole of the steam has to pa.s.s through it, and the intensity of the blast is increased by the increased velocity thus given to the steam; whereas when the nozzle is moved downward the steam escapes through the annular opening left between the nozzle and the pipe, as well as through the nozzle itself, and the intensity of the blast is diminished by the enlargement of the opening for the escape of the steam thus made available.

285._Q._--What is the best diameter for the tubes of locomotive boilers?

_A._--Bury's locomotive with 14 inch cylinders contains 92 tubes of 2-1/8th inches external diameter, and 10 feet 6 inches long; whereas Stephenson's locomotive with 15 inch cylinders contains 150 tubes of 1-5/8ths external diameter, 13 feet 6 inches long. In Stephenson's boiler, in order that the part of the tubes next the chimney may be of any avail for the generation of steam, the draught has to be very intense, which in its turn involves a considerable expenditure of power; and it is questionable whether the increased expenditure of power upon the blast, in Stephenson's long tubed locomotives, is compensated by the increased generation of steam consequent upon the extension of the heating surface. When the tubes are small in diameter they are apt to become partially choked with pieces of c.o.ke; but an internal diameter of 1-5/8ths may be employed without inconvenience if the draught be of medium intensity.

286. _Q._--Will you ill.u.s.trate the relation between the length and diameter of locomotive tubes by a comparison with the proportion of flues in flue boilers?

_A._--In most locomotives the velocity of the draught is such that it would require very long tubes to extract the heat from the products of combustion, if the heat were transmitted through the metal of the tubes with only the same facility as through the iron of ordinary flue boilers.

The Nile steamer, with engines of 110 nominal horses power each, and with two boilers having two independent flues in each, of such dimensions as to make each flue equivalent to 55 nominal horses power, works at 62 per cent.

above the nominal power, so that the actual evaporative efficacy of each flue would be equivalent to 89 actual horses power, supposing the engines to operate without expansion; but as the mean pressure in the cylinder is somewhat less than the initial pressure, the evaporative efficacy of each flue may be reckoned equivalent to 80 actual horses power. With this evaporative power there is a calorimeter of 990 square inches, or 12.3 square inches per actual horse power; whereas in Stephenson's locomotive with 150 tubes, if the evaporative power be taken at 200 cubic feet of water in the hour, which is a large supposition, the engine will be equal to 200 actual horses power. If the internal diameter of the tubes be taken at thirteen eighths of an inch, the calorimeter per actual horse power will only be 1.1136 square inches, or in other words the calorimeter in the locomotive boiler will be 11.11 times less than in the flue boiler for the same power, so that the draught in the locomotive must be 11.11 times stronger, and the ratio of the length of the tube to its diameter 11.11 times greater than in the flue boiler, supposing the heat to be transmitted with only the same facility. The flue of the Nile would require to be 35- 1/2 inches in diameter if made of the cylindrical form, and 47-3/4 feet long; the tubes of a locomotive if 1-3/8ths inch diameter would only require to be 22.19 inches long with the same velocity of draught; but as the draught is 11.11 times faster than in a flue boiler, the tubes ought to be 246.558 inches, or about 20-1/2 feet long according to this proportion.

In practice, however, they are one third less than this, which reduces the heating surface from 9 to 6 square feet per actual horse power, and this length even is found to be inconvenient. It is greatly preferable therefore to increase the calorimeter, and diminish the intensity of the draught.

BOILER CHIMNEYS.

287. _Q._--By what process do you ascertain the dimensions of the chimney of a land boiler?

_A._--By a reference to the volume of air it is necessary in a given time to supply to the burning fuel, and to the velocity of motion produced by the rarefaction in the chimney; for the area of the chimney requires to be such, that with the velocity due to that rarefaction, the quant.i.ty of air requisite for the combustion of the fuel shall pa.s.s through the furnace in the specified time. Thus if 200 cubic feet of air of the atmospheric density are required for the combustion of a pound of coal,--though 250 lbs. is nearer the quant.i.ty generally required,--and 10 lbs. of coal per horse power per hour are consumed by an engine, then 2000 cubic feet of air must be supplied to the furnace per horse power per hour, and the area of the chimney must be such as to deliver this quant.i.ty at the increased bulk due to the high temperature of the chimney when moving with the velocity the rarefaction within the chimney occasions, and which, in small chimneys, is usually such as to support a column of half an inch of water. The velocity with which a denser fluid flows into a rarer one is equal to the velocity a heavy body acquires in falling through a height equal to the difference of alt.i.tude of two columns of the heavier fluid of such heights as will produce the respective pressures; and, therefore, when the difference of pressure or amount of rarefaction in the chimney is known, it is easy to tell the velocity of motion which ought to be produced by it. In practice, however, these theoretical results are not to be trusted, until they have received such modifications as will make them representative of the practice of the most experienced constructors.

288. _Q._--What then is the rule followed by the most experienced constructors?

_A._--Boulton and Watt's rule for the dimensions of the chimney of a land engine is as follows:--multiply the number of pounds of coal consumed under the boiler per hour by 12, and divide the product by the square root of the height of the chimney in feet; the quotient is the area of the chimney in square inches in the smallest part. A factory chimney suitable for a 20 horse boiler is commonly made about 20 in. square inside, and 80 ft. high; and these dimensions are those which answer to a consumption of 15 lbs. of coal per horse power per hour, which is a very common consumption in factory engines. If 15 lbs. of coal be consumed per horse power per hour, the total consumption per hour in a 20 horse boiler will be 300 lbs., and 300 multiplied by 12 = 3600, and divided by 9 (the square root of the height) = 400, which is the area of the chimney in square inches. It will not answer well to increase the height of a chimney of this area to more than 40 or 50 yards, without also increasing the area, nor will it be of utility to increase the area much without also increasing the height. The quant.i.ty of coal consumed per hour in pounds, multiplied by 5, and divided by the square root of the height of the chimney, is the proper collective area of the openings between the bars of the grate for the admission of air to the fire.

289. _Q._--Is this rule applicable to the chimneys of steam vessels?

_A._--In steam vessels Boulton and Watt have heretofore been in the habit of allowing 8-1/2 square inches of area of chimney per horse power, but they now allow 6 square inches to 7 square inches. In some steam vessels a steam blast like that of a locomotive, but of a smaller volume, is used in the chimney, and many of the evils of a boiler deficient in draught may be remedied by this expedient, but a steam blast in a low pressure engine occasions an obvious waste of steam; it also makes an unpleasant noise, and in steam vessels it frequently produces the inconvenience of carrying the smaller parts of the coal up the chimney, and scattering it over the deck among the pa.s.sengers. It is advisable, therefore, to give a sufficient calorimeter in all low pressure boilers, and a sufficient height of chimney to enable the chimney to operate without a steam jet; but it is useful to know that a steam jet is a resource in the case of a defective boiler, or where the boiler has to be urged beyond its power.

STEAM ROOM AND PRIMING.

290. _Q._--What is the capacity of steam room allowed in boilers per horse power?

_A._--The capacity of steam room allowed by Boulton and Watt in their land wagon boilers is 8-3/4 cubic feet per horse power in the two horse power boiler, and 5-3/4 cubic feet in the 20 horse power boiler; and in the larger cla.s.s of boilers, such as those suitable for 30 and 45 horse power engines, the capacity of the steam room does not fall below this amount, and, indeed, is nearer 6 than 5-3/4 cubic feet per horse power. The content of water is 18-1/2 cubic feet per horse power in the two horse power boiler, and 15 cubic feet per horse power in the 20 horse power boiler.

291. _Q._--Is this the proportion Boulton and Watt allow in their marine boilers?

_A._--Boulton and Watt in their early steam vessels were in the habit of allowing for the capacity of the steam, s.p.a.ce in marine boilers 16 times the content of the cylinder; but as there were two cylinders, this was equivalent to 8 times the content of both cylinders, which is the proportion commonly followed in land engines, and which agrees very nearly with the proportion of between 5 and 6 cubic feet of steam room per horse power already referred to. Taking for example an engine with 23 inches diameter of cylinder and 4 feet stroke, which will be 18.4 horse power--the area of the cylinder will be 415.476 square inches, which, multiplied by 48, the number of inches in the stroke, will give 19942.848 for the capacity of the cylinder in cubic inches; 8 times this is 159542.784 cubic inches, or 92.3 cubic feet; 92.3 divided by 18.4 is rather more than 5 cubic feet per horse power.

292. _Q._--Is the production of the steam in the boiler uniform throughout the stroke of the engine?

_A._--It varies with the slight variations in the pressure within the boiler throughout the stroke. Usually the larger part of the steam is produced during the first part of the stroke of the engine, for there is then the largest demand for steam, as the steam being commonly cut off somewhat before the end of the stroke, the pressure rises somewhat in the boiler during that period, and little steam is then produced. There is less necessity that the steam s.p.a.ce should be large when the flow of steam from the boiler is very uniform, as it will be where there are two engines attached to the boiler at right angles with one another, or where the engines work at a great speed, as in the case of locomotive engines. A high steam chest too, by rendering boiling over into the steam pipes, or priming as it is called, more difficult, obviates the necessity for so large a steam s.p.a.ce; as does also a perforated steam pipe stretching through the length of the boiler, so as not to take the steam from one place. The use of steam of a high pressure, worked expansively, has the same operation; so that in modern marine boilers, of the tubular construction, where the whole or most of these modifying circ.u.mstances exist, there is no necessity for so large a proportion of steam room as 5 or 6 cubic feet per nominal horse power, and about one, 1-1/2, or 2 cubic feet of steam room per cubic foot of water evaporated, more nearly represents the general practice.

293. _Q._--Is this the proportion of steam room adopted in locomotive boilers?

_A._--No; in locomotive boilers the proportion of steam room per cubic foot of water evaporated is considerably less even than this. It does not usually exceed 1/5 of a cubic foot per cubic foot of water evaporated; and with clean water, with a steam dome a few feet high set on the barrel of the boiler, or with a perforated pipe stretching from end to end of the barrel, and with the steam room divided about equally between the barrel and the fire box, very little priming is found to occur even with this small proportion of total steam room. About 3/4 the depth of the barrel is usually filled with water, and 1/4 with steam.

294. _Q._--What is priming?

_A._--Priming is a violent agitation of the water within the boiler, in consequence of which a large quant.i.ty of water pa.s.ses off with the steam in the shape of froth or spray. Such a result is injurious, both as regards the efficacy of the engine, and the safety of the engine and boiler; for the large volume of hot water carried by the steam into the condenser impairs the vacuum, and throws a great load upon the air pump, which diminishes the speed and available power of the engine; and the existence of water within the cylinder, unless there be safety valves upon the cylinder to permit its escape, will very probably cause some part of the machinery to break, by suddenly arresting the motion of the piston when it meets the surface of the water,--the slide valve being closed to the condenser before the termination of the stroke, in all engines with lap upon the valves, so that the water within the cylinder is prevented from escaping in that direction. At the same time the boiler is emptied of its water too rapidly for the feed pump to be able to maintain the supply, and the flues are in danger of being burnt from a deficiency of water above them.

295. _Q._--What are the causes of priming?

_A._--The causes of priming are an insufficient amount of steam room, an inadequate area of water level, an insufficient width between the flues or tubes for the ascent of the steam and the descent of water to supply the vacuity the steam occasions, and the use of dirty water in the boiler. New boilers prime more than old boilers, and steamers entering rivers from the sea are more addicted to priming than if sea or river water had alone been used in the boilers--probably from the boiling point of salt water being higher than that of fresh, whereby the salt water acts like so much molten metal in raising the fresh water into steam. Opening the safety valve suddenly may make a boiler prime, and if the safety valve be situated near the mouth of the steam pipe, the spray or foam thus created may be mingled with the steam pa.s.sing into the engine, and materially diminish its effective power; but if the safety valve be situated at a distance from the mouth of the steam pipe, the quant.i.ty of foam or spray pa.s.sing into the engine may be diminished by opening the safety valve; and in locomotives, therefore, it is found beneficial to have a safety valve on the barrel of the boiler at a point remote from the steam chest, by partially opening which, any priming in that part of the boiler adjacent to the steam chest is checked, and a purer steam than before p.u.s.s.es to the engine.

296. _Q._--What is the proper remedy for priming?

_A._--When a boiler primes, the engineer generally closes the throttle valve partially, turns off the injection water, and opens the furnace doors, whereby the generation of steam is checked, and a less violent ebullition in the boiler suffices. Where the priming arises from an insufficient amount of steam room, it may be mitigated by putting a higher pressure upon the boiler and working more expansively, or by the interposition of a perforated plate between the boiler and the steam chest, which breaks the ascending water and liberates the steam. In some cases, however, it may be necessary to set a second steam chest on the top of the existing one, and it will be preferable to establish a communication with this new chamber by means of a number of small holes, bored through the iron plate of the boiler, rather than by a single large orifice. Where priming arises from the existence of dirty water in the boiler, the evil may be remedied by the use of collecting vessels, or by blowing off largely from the surface; and where it arises from an insufficient area of water level, or an insufficient width between the flues for the free ascent of the steam and the descent of the superinc.u.mbent water, the evil may be abated by the addition of circulating pipes in some part of the boiler, which will allow the water to descend freely to the place from whence the steam rises, the width of the water s.p.a.ces being virtually increased by restricting their function to the transmission of a current of steam and water to the surface. It is desirable to arrange the heating surface in such a way that the feed water entering the boiler at its lowest point is heated gradually as it ascends, until toward the superior part of the flues it is raised gradually into steam; but in all cases there will be currents in the boiler for which it is proper to provide. The steam pipe proceeding to the engine should obviously be attached to the highest point of the steam chest, in boilers of every construction.

297. _Q._--Having now stated the proportions proper to be adopted for evaporating any given quant.i.ty of water in steam boilers, will you proceed to show how you would proportion a boiler to do a given amount of work? say a locomotive boiler which will propel a train of 100 tons weight at a speed of 50 miles an hour.

_A._--According to experiments on the resistance of railway trains at various rates of speed, made by Mr. Gooch, of the Great Western Railway, it appears that a train weighing, with locomotive, tender, and carriages, about 100 tons, experiences, at a speed of 50 miles an hour, a resistance of about 3,000 lbs., or about 30 lbs. per ton; which resistance includes the resistance of the engine as well as that of the train. This, therefore, is the force which must be imparted at the circ.u.mference of the driving wheels, except that small part intercepted by the engine itself, and the force exerted by the pistons must be greater than that at the circ.u.mference of the driving wheel, in the proportion of their slower motion, or in the proportion of the circ.u.mference of the driving wheel to the length of a double stroke of the engine. If the diameter of the driving wheel be 5-1/2 feet, its circ.u.mference will be 17.278 feet, and if the length of the stroke be 18 inches, the length of a double stroke will be 3 feet. The pressure on the pistons must therefore be greater than the traction at the circ.u.mference of the driving wheel, in the proportion of 17.278 to 3, or, in other words, the mean pressure on the pistons must be 17,278 lbs.; and the area of cylinders, and pressure of steam, must be such as to produce conjointly this total pressure. It thus becomes easy to tell the volume and pressure of steam required, which steam in its turn represents its equivalent of water which is to be evaporated from the boiler, and the boiler must be so proportioned, by the rules already given, as to evaporate this water freely. In the case of a steam vessel, the mode of procedure is the same, and when the resistance and speed are known, it is easy to tell the equivalent value of steam.

STRENGTH OF BOILERS.

298. _Q._--What strain should the iron of boilers be subjected to in working?