Zoonomia - Volume I Part 29
Library

Volume I Part 29

That this quick small pulse is owing to want of irritability, appears, first, because it attends other symptoms of want of irritability; and, secondly, because on the application of a stimulus greater than usual, it becomes slower and larger. Thus in cold fits of agues, in hysteric palpitations of the heart, and when the body is much exhausted by haemorrhages, or by fatigue, as well as in nervous fevers, the pulse becomes quick and small; and secondly, in all those cases if an increase of stimulus be added, by giving a little wine or opium; the quick small pulse becomes slower and larger, as any one may easily experience on himself, by counting his pulse after drinking one or two gla.s.ses of wine, when he is faint from hunger or fatigue.

Now nothing can so strongly evince that this quick small pulse is owing to defect of irritability, than that an additional stimulus, above what is natural, makes it become slower and larger immediately: for what is meant by a defect of irritability, but that the arteries and heart are not excited into their usual exertions by their usual quant.i.ty of stimulus? but if you increase the quant.i.ty of stimulus, and they immediately act with their usual energy, this proves their previous want of their natural degree of irritability. Thus the trembling hands of drunkards in a morning become steady, and acquire strength to perform their usual offices, by the accustomed stimulus of a gla.s.s or two of brandy.

2. In sleep and in apoplexy the pulse becomes slower, which is not owing to defect of irritability, for it is at the same time larger; and thence the quant.i.ty of the circulation is rather increased than diminished. In these cases the organs of sense are closed, and the voluntary power is suspended, while the motions dependent on internal irritations, as those of digestion and secretion, are carried on with more than their usual vigour; which has led superficial observers to confound these cases with those arising from want of irritability. Thus if you lift up the eyelid of an apoplectic patient, who is not actually dying, the iris will, as usual, contract itself, as this motion is a.s.sociated with the stimulus of light; but it is not so in the last stages of nervous fevers, where the pupil of the eye continues expanded in the broad day-light: in the former case there is a want of voluntary power, in the latter a want of irritability.

Hence also those const.i.tutions which are deficient in quant.i.ty of irritability, and which possess too great sensibility, as during the pain of hunger, of hysteric spasms, or nervous headachs, are generally supposed to have too much irritability; and opium, which in its due dose is a most powerful stimulant, is erroneously called a sedative; because by increasing the irritative motions it decreases the pains arising from defect of them.

Why the pulse should become quicker both from an increase of irritation, as in the synocha irritativa, or irritative fever with strong pulse; and from the decrease of it, as in the typhus irritativus, or irritative fever with weak pulse; seems paradoxical. The former circ.u.mstance needs no ill.u.s.tration; since if the stimulus of the blood, or the irritability of the sanguiferous system be increased, and the strength of the patient not diminished, it is plain that the motions must be performed quicker and stronger.

In the latter circ.u.mstance the weakness of the muscular power of the heart is soon over-balanced by the elasticity of the coats of the arteries, which they possess besides a muscular power of contraction; and hence the arteries are distended to less than their usual diameters. The heart being thus stopped, when it is but half emptied, begins sooner to dilate again; and the arteries being dilated to less than their usual diameters, begin so much sooner to contract themselves; insomuch, that in the last stages of fevers with weakness the frequency of pulsation of the heart and arteries becomes doubled; which, however, is never the case in fevers with strength, in which they seldom exceed 118 or 120 pulsations in a minute. It must be added, that in these cases, while the pulse is very small and very quick, the heart often feels large, and labouring to one's hand; which coincides with the above explanation, shewing that it does not completely empty itself.

3. In cases however of debility from paucity of blood, as in animals which are bleeding to death in the slaughter-house, the quick pulsations of the heart and arteries may be owing to their not being distended to more than half their usual diastole; and in consequence they must contract sooner, or more frequently, in a given time. As weak people are liable to a deficient quant.i.ty of blood, this cause may occasionally contribute to quicken the pulse in fevers with debility, which may be known by applying one's hand upon the heart as above; but the princ.i.p.al cause I suppose to consist in the diminution of sensorial power. When a muscle contains, or is supplied with but little sensorial power, its contraction soon ceases, and in consequence may soon recur, as is seen in the trembling hands of people weakened by age or by drunkenness. See Sect. XII. 1. 4. XII. 3. 4.

It may nevertheless frequently happen, that both the deficiency of stimulus, as where the quant.i.ty of blood is lessened (as described in No.

4. of this section), and the deficiency of sensorial power, as in those of the temperament of irritability, described in Sect. x.x.xI. occur at the same time; which will thus add to the quickness of the pulse and to the danger of the disease.

III. 1. A certain degree of heat is necessary to muscular motion, and is, in consequence, essential to life. This is observed in those animals and insects which pa.s.s the cold season in a torpid state, and which revive on being warmed by the fire. This necessary stimulus of heat has two sources; one from the fluid atmosphere of heat, in which all things are immersed, and the other from the internal combinations of the particles, which form the various fluids, which are produced in the extensive systems of the glands. When either the external heat, which surrounds us, or the internal production of it, becomes lessened to a certain degree, the pain of cold is perceived.

This pain of cold is experienced most sensibly by our teeth, when ice is held in the mouth; or by our whole system after having been previously accustomed to much warmth. It is probable, that this pain does not arise from the mechanical or chemical effects of a deficiency of heat; but that, like the organs of sense by which we perceive hunger and thirst, this sense of heat suffers pain, when the stimulus of its object is wanting to excite the irritative motions of the organ; that is, when the sensorial power becomes too much acc.u.mulated in the quiescent fibres. See Sect. XII. 5. 3.

For as the peristaltic motions of the stomach are lessened, when the pain of hunger is great, so the action of the cutaneous capillaries are lessened during the pain of cold; as appears by the paleness of the skin, as explained in Sect. XIV. 6. on the production of ideas.

The pain in the small of the back and forehead in the cold fits of the ague, in nervous hemicrania, and in hysteric paroxysms, when all the irritative motions are much impaired, seems to arise from this cause; the vessels of these membranes or muscles become torpid by their irritative a.s.sociations with other parts of the body, and thence produce less of their accustomed secretions, and in consequence less heat is evolved, and they experience the pain of cold; which coldness may often be felt by the hand applied upon the affected part.

2. The importance of a greater or less deduction of heat from the system will be more easy to comprehend, if we first consider the great expense of sensorial power used in carrying on the vital motions; that is, which circulates, absorbs, secretes, aerates, and elaborates the whole ma.s.s of fluids with unceasing a.s.siduity. The sensorial power, or spirit of animation, used in giving perpetual and strong motion to the heart, which overcomes the elasticity and vis inertiae of the whole arterial system; next the expense of sensorial power in moving with great force and velocity the innumerable trunks and ramifications of the arterial system; the expense of sensorial power in circulating the whole ma.s.s of blood through the long and intricate intortions of the very fine vessels, which compose the glands and capillaries; then the expense of sensorial power in the exertions of the absorbent extremities of all the lacteals, and of all the lymphatics, which open their mouths on the external surface of the skin, and on the internal surfaces of every cell or interstice of the body; then the expense of sensorial power in the venous absorption, by which the blood is received from the capillary vessels, or glands, where the arterial power ceases, and is drank up, and returned to the heart; next the expense of sensorial power used by the muscles of respiration in their office of perpetually expanding the bronchia, or air-vessels, of the lungs; and lastly in the unceasing peristaltic motions of the stomach and whole system of intestines, and in all the secretions of bile, gastric juice, mucus, perspirable matter, and the various excretions from the system. If we consider the ceaseless expense of sensorial power thus perpetually employed, it will appear to be much greater in a day than all the voluntary exertions of our muscles and organs of sense consume in a week; and all this without any sensible fatigue! Now, if but a part of these vital motions are impeded, or totally stopped for but a short time, we gain an idea, that there must be a great acc.u.mulation of sensorial power; as its production in these organs, which are subject to perpetual activity, is continued during their quiescence, and is in consequence acc.u.mulated.

While, on the contrary, where those vital organs act too forcibly by increase of stimulus without a proportionally-increased production of sensorial power in the brain, it is evident, that a great deficiency of action, that is torpor, must soon follow, as in fevers; whereas the locomotive muscles, which act only by intervals, are neither liable to so great acc.u.mulation of sensorial power during their times of inactivity, nor to so great an exhaustion of it during their times of action.

Thus, on going into a very cold bath, suppose at 33 degrees of heat on Fahrenheit's scale, the action of the subcutaneous capillaries, or glands, and of the mouths of the cutaneous absorbents is diminished, or ceases for a time. Hence less or no blood pa.s.ses these capillaries, and paleness succeeds. But soon after emerging from the bath, a more florid colour and a greater degree of heat is generated on the skin than was possessed before immersion; for the capillary glands, after this quiescent state, occasioned by the want of stimulus, become more irritable than usual to their natural stimuli, owing to the acc.u.mulation of sensorial power, and hence a greater quant.i.ty of blood is transmitted through them, and a greater secretion of perspirable matter; and, in consequence, a greater degree of heat succeeds.

During the continuance in cold water the breath is cold, and the act of respiration quick and laborious; which have generally been ascribed to the obstruction of the circulating fluid by a spasm of the cutaneous vessels, and by a consequent acc.u.mulation of blood in the lungs, occasioned by the pressure as well as by the coldness of the water. This is not a satisfactory account of this curious phaenomenon, since at this time the whole circulation is less, as appears from the smallness of the pulse and coldness of the breath; which shew that less blood pa.s.ses through the lungs in a given time; the same laborious breathing immediately occurs when the paleness of the skin is produced by fear, where no external cold or pressure are applied.

The minute vessels of the bronchia, through which the blood pa.s.ses from the arterial to the venal system, and which correspond with the cutaneous capillaries, have frequently been exposed to cold air, and become quiescent along with those of the skin; and hence their motions are so a.s.sociated together, that when one is affected either with quiescence or exertion, the other sympathizes with it, according to the laws of irritative a.s.sociation.

See Sect. XXVII. 1. on haemorrhages.

Besides the quiescence of the minute vessels of the lungs, there are many other systems of vessels which become torpid from their irritative a.s.sociations with those of the skin, as the absorbents of the bladder and intestines; whence an evacuation of pale urine occurs, when the naked skin is exposed only to the coldness of the atmosphere; and sprinkling the naked body with cold water is known to remove even pertinacious constipation of the bowels. From the quiescence of such extensive systems of vessels as the glands and capillaries of the skin, and the minute vessels of the lungs, with their various absorbent series of vessels, a great acc.u.mulation of sensorial powers is occasioned; part of which is again expended in the increased exertion of all these vessels, with an universal glow of heat in consequence of this exertion, and the remainder of it adds vigour to both the vital and voluntary exertions of the whole day.

If the activity of the subcutaneous vessels, and of those with which their actions are a.s.sociated, was too great before cold immersion, as in the hot days of summer, and by that means the sensorial power was previously diminished, we see the cause why the cold bath gives such present strength; namely, by stopping the unnecessary activity of the subcutaneous vessels, and thus preventing the too great exhaustion of sensorial power; which, in metaphorical language, has been called _bracing_ the system: which is, however, a mechanical term, only applicable to drums, or musical strings: as on the contrary the word _relaxation_, when applied to living animal bodies, can only mean too small a quant.i.ty of stimulus, or too small a quant.i.ty of sensorial power; as explained in Sect. XII. 1.

3. This experiment of cold bathing presents us with a simple fever-fit; for the pulse is weak, small, and quick during the cold immersion; and becomes strong, full, and quick during the subsequent glow of heat; till in a few minutes these symptoms subside, and the temporary fever ceases.

In those const.i.tutions where the degree of inirritability, or of debility, is greater than natural, the coldness and paleness of the skin with the quick and weak pulse continue a long time after the patient leaves the bath; and the subsequent heat approaches by unequal flushings, and he feels himself disordered for many hours. Hence the bathing in a cold spring of water, where the heat is but forty-eight degrees on Fahrenheit's thermometer, much disagrees with those of weak or inirritable habits of body; who possess so little sensorial power, that they cannot without injury bear to have it diminished even for a short time; but who can nevertheless bear the more temperate coldness of Buxton bath, which is about eighty degrees of heat, and which strengthens them, and makes them by habit less liable to great quiescence from small variations of cold, and thence less liable to be disordered by the unavoidable accidents of life.

Hence it appears, why people of these inirritable const.i.tutions, which is another expression for sensorial deficiency, are often much injured by bathing in a cold spring of water; and why they should continue but a very short time in baths, which are colder than their bodies; and should gradually increase both the degree of coldness of the water, and the time of their continuance in it, if they would obtain salutary effects from cold immersions. See Sect. XII. 2. 1.

On the other hand, in all cases where the heat of the external surface of the body, or of the internal surface of the lungs, is greater than natural, the use of exposure to cool air may be deduced. In fever-fits attended with strength, that is with great quant.i.ty of sensorial power, it removes the additional stimulus of heat from the surfaces above mentioned, and thus prevents their excess of useless motion; and in fever-fits attended with debility, that is with a deficiency of the quant.i.ty of sensorial power, it prevents the great and dangerous waste of sensorial power expended in the unnecessary increase of the actions of the glands and capillaries of the skin and lungs.

4. In the same manner, when any one is long exposed to very cold air, a quiescence is produced of the cutaneous and pulmonary capillaries and absorbents, owing to the deficiency of their usual stimulus of heat; and this quiescence of so great a quant.i.ty of vessels affects, by irritative a.s.sociation, the whole absorbent and glandular system, which becomes in a greater or less degree quiescent, and a cold fit of fever is produced.

If the deficiency of the stimulus of heat is very great, the quiescence becomes so general as to extinguish life, as in those who are frozen to death.

If the deficiency of heat be in less degree, but yet so great as in some measure to disorder the system, and should occur the succeeding day, it will induce a greater degree of quiescence than before, from its acting in concurrence with the period of the diurnal circle of actions, explained in Sect. x.x.xVI. Hence from a small beginning a greater and greater degree of quiescence may be induced, till a complete fever-fit is formed; and which will continue to recur at the periods by which it was produced. See Sect.

XVII. 3. 6.

If the degree of quiescence occasioned by defect of the stimulus of heat be very great, it will recur a second time by a slighter cause, than that which first induced it. If the cause, which induces the second fit of quiescence, recurs the succeeding day, the quotidian fever is produced; if not till the alternate day, the tertian fever; and if not till after seventy-two hours from the first fit of quiescence, the quartan fever is formed. This last kind of fever recurs less frequently than the other, as it is a disease only of those of the temperament of a.s.sociability, as mentioned in Sect. x.x.xI.; for in other const.i.tutions the capability of forming a habit ceases, before the new cause of quiescence is again applied, if that does not occur sooner than in seventy-two hours.

And hence those fevers, whose cause is from cold air of the night or morning, are more liable to observe the solar day in their periods; while those from other causes frequently observe the lunar day in their periods, their paroxysms returning near an hour later every day, as explained in Sect. x.x.xVI.

IV. Another frequent cause of the cold fits of fever is the defect of the stimulus of distention. The whole arterial system would appear, by the experiments of Haller, to be irritable by no other stimulus, and the motions of the heart and alimentary ca.n.a.l are certainly in some measure dependant on the same cause. See Sect. XIV. 7. Hence there can be no wonder, that the diminution of distention should frequently induce the quiescence, which const.i.tutes the beginning of fever-fits.

Monsieur Leiutaud has judiciously mentioned the deficiency of the quant.i.ty of blood amongst the causes of diseases, which he says is frequently evident in dissections: fevers are hence brought on by great haemorrhages, diarrhoeas, or other evacuations; or from the continued use of diet, which contains but little nourishment; or from the exhaustion occasioned by violent fatigue, or by those chronic diseases in which the digestion is much impaired; as where the stomach has been long affected with the gout or schirrus; or in the paralysis of the liver, as described in Sect. x.x.x.

Hence a paroxysm of gout is liable to recur on bleeding or purging; as the torpor of some viscus, which precedes the inflammation of the foot, is thus induced by the want of the stimulus of distention. And hence the extremities of the body, as the nose and fingers, are more liable to become cold, when we have long abstained from food; and hence the pulse is increased both in strength and velocity above the natural standard after a full meal by the stimulus of distention.

However, this stimulus of distention, like the stimulus of heat above described, though it contributes much to the due action not only of the heart, arteries, and alimentary ca.n.a.l, but seems necessary to the proper secretion of all the various glands; yet perhaps it is not the sole cause of any of these numerous motions: for as the lacteals, cutaneous absorbents, and the various glands appear to be stimulated into action by the peculiar pungency of the fluids they absorb, so in the intestinal ca.n.a.l the pungency of the digesting aliment, or the acrimony of the faeces, seem to contribute, as well as their bulk, to promote the peristaltic motions; and in the arterial system, the momentum of the particles of the circulating blood, and their acrimony, stimulate the arteries, as well as the distention occasioned by it. Where the pulse is small this defect of distention is present, and contributes much to produce the febris irritativa pulsu debili, or irritative fever with weak pulse, called by modern writers nervous fever, as a predisponent cause. See Sect. XII. 1. 4.

Might not the transfusion of blood, suppose of four ounces daily from a strong man, or other healthful animal, as a sheep or an a.s.s, be used in the early state of nervous or putrid fevers with great prospect of success?

V. 1. The defect of the momentum of the particles of the circulating blood is another cause of the quiescence, with which the cold fits of fever commence. This stimulus of the momentum of the progressive particles of the blood does not act over the whole body like those of heat and distention above described, but is confined to the arterial system; and differs from the stimulus of the distention of the blood, as much as the vibration of the air does from the currents of it. Thus are the different organs of our bodies stimulated by four different mechanic properties of the external world: the sense of touch by the pressure of solid bodies so as to distinguish their figure; the muscular system by the distention, which they occasion; the internal surface of the arteries, by the momentum of their moving particles; and the auditory nerves, by the vibration of them: and these four mechanic properties are as different from each other as the various chemical ones, which are adapted to the numerous glands, and to the other organs of sense.

2. The momentum of the progressive particles of blood is compounded of their velocity and their quant.i.ty of matter: hence whatever circ.u.mstances diminish either of these without proportionally increasing the other, and without superadding either of the general stimuli of heat or distention, will tend to produce a quiescence of the arterial system, and from thence of all the other irritative motions, which are connected with it.

Hence in all those const.i.tutions or diseases where the blood contains a greater proportion of serum, which is the lightest part of its composition, the pulsations of the arteries are weaker, as in nervous fevers, chlorosis, and hysteric complaints; for in these cases the momentum of the progressive particles of blood is less: and hence, where the denser parts of its composition abound, as the red part of it, or the coagulable lymph, the arterial pulsations are stronger; as in those of robust health, and in inflammatory diseases.

That this stimulus of the momentum of the particles of the circulating fluid is of the greatest consequence to the arterial action, appears from the experiment of injecting air into the blood vessels, which seems to destroy animal life from the want of this stimulus of momentum; for the distention of the arteries is not diminished by it, it possesses no corrosive acrimony, and is less liable to repa.s.s the valves than the blood itself; since air-valves in all machinery require much less accuracy of construction than those which are opposed to water.

3. One method of increasing the velocity of the blood, and in consequence the momentum of its particles, is by the exercise of the body, or by the friction of its surface: so, on the contrary, too great indolence contributes to decrease this stimulus of the momentum of the particles of the circulating blood, and thus tends to induce quiescence; as is seen in hysteric cases, and chlorosis, and the other diseases of sedentary people.

4. The velocity of the particles of the blood in certain circ.u.mstances is increased by venesection, which, by removing a part of it, diminishes the resistance to the motion of the other part, and hence the momentum of the particles of it is increased. This may be easily understood by considering it in the extreme, since, if the resistance was greatly increased, so as to overcome the propelling power, there could be no velocity, and in consequence no momentum at all. From this circ.u.mstance arises that curious phaenomenon, the truth of which I have been more than once witness to, that venesection will often instantaneously relieve those nervous pains, which attend the cold periods of hysteric, asthmatic, or epileptic diseases; and that even where large doses of opium have been in vain exhibited. In these cases the pulse becomes stronger after the bleeding, and the extremities regain their natural warmth; and an opiate then given acts with much more certain effect.

VI. There is another cause, which seems occasionally to induce quiescence into some part of our system, I mean the influence of the sun and moon; the attraction of these luminaries, by decreasing the gravity of the particles of the blood, cannot affect their momentum, as their vis inertiae remains the same; but it may nevertheless produce some chemical change in them, because whatever affects the general attractions of the particles of matter may be supposed from a.n.a.logy to affect their specific attractions or affinities: and thus the stimulus of the particles of blood may be diminished, though not their momentum. As the tides of the sea obey the southing and northing of the moon (allowing for the time necessary for their motion, and the obstructions of the sh.o.r.es), it is probable, that there are also atmospheric tides on both sides of the earth, which to the inhabitants of another planet might so deflect the light as to resemble the ring of Saturn. Now as these tides of water, or of air, are raised by the diminution of their gravity, it follows, that their pressure on the surface of the earth is no greater than the pressure of the other parts of the ocean, or of the atmosphere, where no such tides exist; and therefore that they cannot affect the mercury in the barometer. In the same manner, the gravity of all other terrestrial bodies is diminished at the times of the southing and northing of the moon, and that in a greater degree when this coincides with the southing and northing of the sun, and this in a still greater degree about the times of the equinoxes. This decrease of the gravity of all bodies during the time the moon pa.s.ses our zenith or nadir might possibly be shewn by the slower vibrations of a pendulum, compared with a spring clock, or with astronomical observation. Since a pendulum of a certain length moves slower at the line than near the poles, because the gravity being diminished and the vis inertiae continuing the same, the motive power is less, but the resistance to be overcome continues the same.

The combined powers of the lunar and solar attraction is estimated by Sir Isaac Newton not to exceed one 7,868,850th part of the power of gravitation, which seems indeed but a small circ.u.mstance to produce any considerable effect on the weight of sublunary bodies, and yet this is sufficient to raise the tides at the equator above ten feet high; and if it be considered, what small impulses of other bodies produce their effects on the organs of sense adapted to the perception of them, as of vibration on the auditory nerves, we shall cease to to be surprised, that so minute a diminution in the gravity of the particles of blood should so far affect their chemical changes, or their stimulating quality, as, joined with other causes, sometimes to produce the beginnings of diseases.

Add to this, that if the lunar influence produces a very small degree of quiescence at first, and if that recurs at certain periods even with less power to produce quiescence than at first, yet the quiescence will daily increase by the acquired habit acting at the same time, till at length so great a degree of quiescence is induced as to produce phrensy, canine madness, epilepsy, hysteric pains or cold fits of fever, instances of many of which are to be found in Dr. Mead's work on this subject. The solar influence also appears daily in several diseases; but as darkness, silence, sleep, and our periodical meals mark the parts of the solar circle of actions, it is sometimes dubious to which of these the periodical returns of these diseases are to be ascribed.

As far as I have been able to observe, the periods of inflammatory diseases observe the solar day; as the gout and rheumatism have their greatest quiescence about noon and midnight, and their exacerbations some hours after; as they have more frequently their immediate cause from cold air, inanition, or fatigue, than from the effects of lunations: whilst the cold fits of hysteric patients, and those in nervous fevers, more frequently occur twice a day, later by near half an hour each time, according to the lunar day; whilst some fits of intermittents, which are undisturbed by medicines, return at regular solar periods, and others at lunar ones; which may, probably, be owing to the difference of the periods of those external circ.u.mstances of cold, inanition, or lunation, which immediately caused them.

We must, however, observe, that the periods of quiescence and exacerbation in diseases do not always commence at the times of the syzygies or quadratures of the moon and sun, or at the times of their pa.s.sing the zenith or nadir; but as it is probable, that the stimulus of the particles of the circ.u.mfluent blood is gradually diminished from the time of the quadratures to that of the syzygies, the quiescence may commence at any hour, when co-operating with other causes of quiescence, it becomes great enough to produce a disease: afterwards it will continue to recur at the same period of the lunar or solar influence; the same cause operating conjointly with the acquired habit, that is with the catenation of this new motion with the dissevered links of the lunar or solar circles of animal action.

In this manner the periods of menstruation obey the lunar month with great exactness in healthy patients (and perhaps the venereal o.r.g.a.s.m in brute animals does the same), yet these periods do not commence either at the syzygies or quadratures of the lunations, but at whatever time of the lunar periods they begin, they observe the same in their returns till some greater cause disturbs them.

Hence, though the best way to calculate the time of the expected returns of the paroxysms of periodical diseases is to count the number of hours between the commencement of the two preceding fits, yet the following observations may be worth attending to, when we endeavour to prevent the returns of maniacal or epileptic diseases; whose periods (at the beginning of them especially) frequently observe the syzygies of the moon and sun, and particularly about the equinox.

The greatest of the two tides happening in every revolution of the moon, is that when the moon approaches nearest to the zenith or nadir; for this reason, while the sun is in the northern signs, that is during the vernal and summer months, the greater of the two diurnal tides in our lat.i.tude is that, when the moon is above the horizon; and when the sun is in the southern signs, or during the autumnal and winter months, the greater tide is that, which arises when the moon is below the horizon: and as the sun approaches somewhat nearer the earth in winter than in summer, the greatest equinoctial tides are observed to be a little before the vernal equinox, and a little after the autumnal one.

Do not the cold periods of lunar diseases commence a few hours before the southing of the moon during the vernal and summer months, and before the northing of the moon during the autumnal and winter months? Do not palsies and apoplexies, which occur about the equinoxes, happen a few days before the vernal equinoctial lunation, and after the autumnal one? Are not the periods of those diurnal diseases more obstinate, that commence many hours before the southing or northing of the moon, than of those which commence at those times? Are not those palsies and apoplexies more dangerous which commence many days before the syzygies of the moon, than those which happen at those times? See Sect. x.x.xVI. on the periods of diseases.

VII. Another very frequent cause of the cold fit of fever is the quiescence of some of those large congeries of glands, which compose the liver, spleen, or pancreas; one or more of which are frequently so enlarged in the autumnal intermittents as to be perceptible to the touch externally, and are called by the vulgar ague-cakes. As these glands are stimulated into action by the specific pungency of the fluids, which they absorb, the general cause of their quiescence seems to be the too great insipidity of the fluids of the body, co-operating perhaps at the same time with other general causes of quiescence.

Hence, in marshy countries at cold seasons, which have succeeded hot ones, and amongst those, who have lived on innutritious and unstimulating diet, these agues are most frequent. The enlargement of these quiescent viscera, and the swelling of the praecordia in many other fevers, is, most probably, owing to the same cause; which may consist in a general deficiency of the production of sensorial power, as well as in the diminished stimulation of the fluids; and when the quiescence of so great a number of glands, as const.i.tute one of those large viscera, commences, all the other irritative motions are affected by their connection with it, and the cold fit of fever is produced.

VIII. There are many other causes, which produce quiescence of some part of the animal system, as fatigue, hunger, thirst, bad diet, disappointed love, unwholesome air, exhaustion from evacuations, and many others; but the last cause, that we shall mention, as frequently productive of cold fits of fever, is fear or anxiety of mind. The pains, which we are first and most generally acquainted with, have been produced by defect of some stimulus; thus, soon after our nativity we become acquainted with the pain from the coldness of the air, from the want of respiration, and from the want of food. Now all these pains occasioned by defect of stimulus are attended with quiescence of the organ, and at the same time with a greater or less degree of quiescence of other parts of the system: thus, if we even endure the pain of hunger so as to miss one meal instead of our daily habit of repletion, not only the peristaltic motions of the stomach and bowels are diminished, but we are more liable to coldness of our extremities, as of our noses, and ears, and feet, than at other times.

Now, as fear is originally excited by our having experienced pain, and is itself a painful affection, the same quiescence of other fibrous motions accompany it, as have been most frequently connected with this kind of pain, as explained in Sect. XVI. 8. 1. as the coldness and paleness of the skin, trembling, difficult respiration, indigestion, and other symptoms, which contribute to form the cold fit of fevers. Anxiety is fear continued through a longer time, and, by producing chronical torpor of the system, extinguishes life slowly, by what is commonly termed a broken heart.