To Mars via The Moon - Part 10
Library

Part 10

Plate VI]

Resuming the conversation, and keeping as calm as I could in the circ.u.mstances, I placed the matter before him in all its aspects, and after we had been talking together for a long time, he seemed to be able to take a more reasonable view of the position. In order that something might be done to keep his mind from dwelling upon his proposal to return to England, I suggested that we should go to the store-room and thoroughly overhaul it.

He agreed to this, accompanying me to the store-room and pointing out the different places he had searched. The tins were in several sizes, but all were made square in order that not an inch of the available s.p.a.ce might be wasted. We looked into a large number of tins which had not previously been examined, but without finding what we wanted.

At last a thought occurred to me, and I said: "You tell me, John, that you are quite certain you put up the tobacco and labelled the tin yourself, yet the tin so labelled was found to contain tapioca! Do you remember where the tapioca was stowed away?"

He pondered awhile, with his chin resting upon his fingers, then suddenly replied, "Yes, I think I know where it is," and, taking me over to another cupboard at the far end of the room, we made a further search and at last found the tapioca tin, opened it, and lo, there was the missing tobacco!

"Well, I'm blest!" said John, very slowly drawing out the words; then all his ill-humour suddenly vanished, and he burst into a most hearty laugh, in which I joined. Our laughter, indeed, was so mutually contagious, and so often renewed, that we had to sit down to finish it and recover ourselves.

Then John remarked, "Now, Professor, I think I can explain it all. You see I prepared and labelled those confounded tins before loading them up; so I suppose that when stowing away the parcels of tobacco I just glanced at the label on the tin and saw the letter T followed by the right number of other letters, and, taking it for granted that it was the tobacco tin, placed the tobacco in it. The only other tin left to pack was the one I supposed to be labelled 'Tapioca,' and no doubt, without troubling to look at the label at all, I put the tapioca into it; but, of course, it must really have been the tin labelled 'Tobacco.'"

Thus the matter was satisfactorily cleared up. John, having found his beloved weed and recovered from the effects of our patent Martian air, was now quite himself again, seeming very contrite, and apologising repeatedly for his rude conduct.

"That's enough, John," I said, as I laid my hand on his arm; "it is quite clear that what you did was mainly the result of the peculiar air you had been breathing, so I cannot blame you much. If I had not taken so many intervals in the purer air, I might perhaps have been equally affected; as it was, my temper was none of the sweetest."

M'Allister had also quite recovered by this time, and bore no ill-will towards John; indeed, I doubt whether he had any very clear recollection of what had occurred.

So that ended the matter; and this little explosion having cleared the air, we all settled down to our old amicable relationship. We, however, took the precaution of reducing the amount of nitrous-oxide gas in our mixture of air, with a view to preventing any similar untoward results in future.

CHAPTER IX

A NARROW ESCAPE FROM DESTRUCTION--I GIVE SOME PARTICULARS ABOUT MARS AND MARTIAN DISCOVERY

Things now went on quietly and, in fact, rather monotonously for several days; and then we met with another rather startling experience.

We were all sitting together in our living-room on the 9th of September, whiling away the time in a game of whist, and, as it was the final rubber and we were running very close together, we were quite absorbed in the play; although, of course, it was a dummy game.

Suddenly we heard a most tremendous crash, apparently from the right-hand side of the air-chamber, the vessel giving a violent lurch sideways, then shivering and trembling from end to end. The crash was immediately followed by a sharp rattling on the top and side of the _Areonal_, just as though a fusillade of good-sized bullets had been fired at us.

"My word! whatever's that?--one of the cylinders must have exploded,"

cried M'Allister, jumping up in alarm and running into the air-chamber.

We followed him, and looked all round the room at the different machines and apparatus, but could find nothing wrong.

John, chancing to look up, however, at once noticed a large bulge on the inner sh.e.l.l of the vessel, high up on the right-hand side; and then, turning to me, pointed it out, saying, "I think, Professor, it is pretty clear now what has happened."

"Yes, that huge bulge explains itself," I replied; "undoubtedly a fair-sized meteoric stone has collided with our vessel. It is very fortunate that the stone was not much larger, or there would have been an end to the _Areonal_ and to us as well. These meteorites travel at such tremendous speed that, on entering the earth's atmosphere, they become incandescent owing to the friction of the air, and, unless very large, are entirely consumed and dissipated into dust before they can reach the earth. Those that do fall are always partially fused on the outside by the tremendous heat generated by the friction of our atmosphere. These meteorites are what people call 'shooting stars,' and many are under the impression that they really are stars, until the difference is explained to them."

John said, "We ought to congratulate ourselves upon such a lucky escape from annihilation; for had our vessel been constructed of any metal less hard and tough than our 'martalium,' and without a double and packed sh.e.l.l, it must have been wrecked and entirely destroyed by the shock of the tremendous concussion it had sustained. Even the very metal of the casing might have been completely melted by the intense heat generated by the impact of the meteorite."

"Heh, mon!" exclaimed M'Allister; "it's all very well talking about our lucky escape, and putting it all down to your own cleverness in designing and constructing the _Areonal_; but you should rather give thanks to Providence for saving us, and for enabling you to take the precautions you did. I say, 'Thank G.o.d!'" he remarked, and he solemnly raised his right hand as he spoke.

"Quite right, M'Allister," replied John: "we are all too p.r.o.ne to credit ourselves with more than we are ent.i.tled to. At the same time, M'Allister, you must remember that we Englishmen recognise as fully as you do the over-ruling power of Providence, although we may not be quite so free in speaking about it in ordinary conversation."

"Yes," I added, "you may be quite sure, M'Allister, that we are equally as grateful as yourself for the mercy which has preserved us all from an awful death. My very first thought on realising our extremely narrow escape from destruction was to say 'Thank G.o.d!' but I did not say it aloud as you did. It is in matters like these that people differ according to their temperament and training; and it is not safe to judge another because, in any particular circ.u.mstances, he does not act in precisely the same way as we ourselves would."

Thus we travelled on and on, each day bringing us more than two million miles nearer to our destination. Mars was apparently increasing in diameter the nearer we drew to it, and the dark blue line around the south polar snow-cap, indicating the lake of water from the melting snow, was very conspicuous. The snow-cap had recently decreased rapidly, being now near its minimum and irregular in shape, for in the southern hemisphere it was now late in June. Pointing to the planet, I remarked, "There is our destination! We see it now as the poet pictured it for us, and the words of Dr. Oliver Wendell Holmes are very appropriate to the present circ.u.mstances:

'The snow that glittered on the disc of Mars Has melted, and the planet's fiery orb Rolls in the crimson summer of its year!'"

On the 18th of September we pa.s.sed between the earth and Mars, nearly in a line with the sun. On that date Mars was in perigee, or at its nearest point to the earth during the present year. Its distance from the earth was then 36,100,000 miles, and it will not be so close again until the 24th of August 1924. We could not see the earth, as its dark side was turned towards us, and it was also lost in the brilliancy of the sun.

At this date we had travelled 88,000,000 miles since we left the earth, yet we knew it was there, level with our vessel, and only about 29,000,000 miles distant on our left hand, whilst Mars was only 7,000,000 miles from us on our right-hand side.

Our position now was as follows:--Taking an imaginary line drawn from the _Areonal_ to Mars as the base line of an isosceles triangle, we were moving along the left side of the triangle, and Mars was moving in a slightly curved line along the right side. Our paths were therefore converging, and if all went well we should both meet at the apex of the triangle on the 24th September, as we had originally intended.

We therefore had six clear days to cover the distance of less than 12,000,000 miles, so we should have sufficient time to slacken speed at the end of the journey. (See the chart.)

Mars was rapidly growing in size and brightness, for the distance between the planet and the _Areonal_ was quickly diminishing as our paths converged, and the various markings on its almost full round disc formed the subject of continual observation and conversation. We had noticed on several occasions a mistiness on some parts of the planet, which I attributed to the vapours raised from the ca.n.a.ls by the heated atmosphere.

On the 21st of September, when we were all enjoying a smoke in the "evening," and conversation had dragged somewhat, John started us off on a fresh tack and gave us something to talk about for a very long time.

He winked at M'Allister and, looking at me with a knowing smile, said: "Professor, as we are nearing our destination it might perhaps be well if you now gave us some detailed information respecting the planet, similar to that which you gave us when we were approaching the moon. It would be both interesting and useful; for we should learn much more from an orderly statement of the facts than we should from several long but desultory conversations."

"Yes, Professor," chimed in M'Allister, "I'm quite ready to learn something definite about Mars, for I can't say I really know much about it at present."

"Very well then," I replied, "it is upon your own heads, and if you are willing to listen to a rather long story, I am prepared to do the talking. Please remember, however, that it will require some time to make matters clear and understandable."

"Fire away, mon," cried M'Allister, "we will listen as long as you care to talk."

So I began--"Mars, as no doubt you are aware, is a much smaller planet than the earth, its diameter being only 4220 miles, which is a little less than twice the diameter of our moon.

"It would require nine and a half globes the size of Mars to make one globe the size of the earth; and even then it would not be so heavy, because the average density of Mars is only about three-fourths of that of the earth. Mars is the next planet outside the earth's...o...b..t, so is the fourth from the sun. The orbit in which Mars moves in its journey round the sun is very much more eccentric than the earth's...o...b..t; in fact it is more eccentric than the orbits of any of the larger planets.

As a consequence, the planet's distance from the sun varies greatly according to the particular part of the orbit in which it may be moving.

Its mean distance from the sun is 141,500,000 miles, its greatest distance over 154,000,000, and at its nearest approach to the sun, or 'perihelion,' as it is called, its distance is only 129,500,000 miles.

Mars travels in its...o...b..t at a mean rate of 15 miles a second.

"As its...o...b..t is also eccentrically placed in relation to the earth's...o...b..t, it follows that its nearest distance from us in any particular years may vary greatly. The nearest possible approach it can make in regard to the earth is a little under 35,000,000 miles; when at the opposite point of its...o...b..t its nearest approach is about 62,000,000 miles from the earth. As the years of Mars and the earth differ greatly in length, and the two planets move at different speeds, the very favourable oppositions can only occur about once every forty-five years; though a comparatively near opposition occurs about every fifteen years.

Such a close approach we have just witnessed, and it will be fifteen years before Mars is again so near to the earth!

[Ill.u.s.tration: _CHART: showing the Orbits of the Earth and Mars, and the relative positions of the two Planets, during the years 1909-10.

Mars pa.s.sed over the dotted portion of its...o...b..t in the year 1910._

_The Outer Circle is the Orbit of Mars, and the inner Circle is the Orbit of the Earth. The Seasonal points on both Orbits show the Seasons in the Northern hemisphere. In the Southern hemisphere the Seasons are reversed, "Summer" occurring at the point marked "Winter," and "Spring"

at the point marked "Autumn," &c. &c._

_The dotted downward line on the left-hand side shows the course taken by the "Areonal", which left the Earth on the 3rd of August and arrived at Mars on the 24th of September. * Shows the point reached when John wished to turn back; and the lower dotted line, the alternative course then suggested._

_The long dotted line running upwards to the Spring Equinox of the Earth shows the course taken on the homeward Voyage._

_Drawn by M. Wicks._

Plate VII]