Thinking Fast And Slow - Thinking Fast and Slow Part 26
Library

Thinking Fast and Slow Part 26

B. 25% chance to gain $1,000 and 75% chance to gain nothing

Decision (ii): Choose between

C. sure loss of $750

D. 75% chance to lose $1,000 and 25% chance to lose nothing

This pair of choice problems has an important place in the history of prospect theory, and it has new things to tell us about rationality. As you skimmed the two problems, your initial reaction to the sure things (A and C) was attraction to the first and aversion to the second. The emotional evaluation of "sure gain" and "sure loss" is an automatic reaction of System 1, which certainly occurs before the more effortful (and optional) computation of the expected values of the two gambles (respectively, a gain of $250 and a loss of $750). Most people's choices correspond to the predilections of System 1, and large majorities prefer A to B and D to C. As in many other choices that involve moderate or high probabilities, people tend to be risk averse in the domain of gains and risk seeking in the domain of losses. In the original experiment that Amos and I carried out, 73% of respondents chose A in decision i and D in decision ii and only 3% favored the combination of B and C.

You were asked to examine both options before making your first choice, and you probably did so. But one thing you surely did not do: you did not compute the possible results of the four combinations of choices (A and C, A and D, B and C, B and D) to determine which combination you like best. Your separate preferences for the two problems were intuitively compelling and there was no reason to expect that they could lead to trouble. Furthermore, combining the two decision problems is a laborious exercise that you would need paper and pencil to complete. You did not do it. Now consider the following choice problem: AD. 25% chance to win $240 and 75% chance to lose $760BC. 25% chance to win $250 and 75% chance to lose $750

This choice is easy! Option BC actually dominates option AD (the technical term for one option being unequivocally better than another). You already know what comes next. The dominant option in AD is the combination of the two rejected options in the first pair of decision problems, the one that only 3% of respondents favored in our original study. The inferior option BC was preferred by 73% of respondents.Broad or Narrow?This set of choices has a lot to tell us about the limits of human rationality. For one thing, it helps us see the logical consistency of Human preferences for what it is-a hopeless mirage. Have another look at the last problem, the easy one. Would you have imagined the possibility of decomposing this obvious choice problem into a pair of problems that would lead a large majority of people to choose an inferior option? This is generally true: every simple choice formulated in terms of gains and losses can be deconstructed in innumerable ways into a combination of choices, yielding preferences that are likely to be inconsistent.

The example also shows that it is costly to be risk averse for gains and risk seeking for losses. These attitudes make you willing to pay a premium to obtain a sure gain rather than face a gamble, and also willing to pay a premium (in expected value) to avoid a sure loss. Both payments come out of the same pocket, and when you face both kinds of problems at once, the discrepant attitudes are unlikely to be optimal.

There were tw Bght hecome oo ways of construing decisions i and ii:narrow framing: a sequence of two simple decisions, considered separately

broad framing: a single comprehensive decision, with four options

Broad framing was obviously superior in this case. Indeed, it will be superior (or at least not inferior) in every case in which several decisions are to be contemplated together. Imagine a longer list of 5 simple (binary) decisions to be considered simultaneously. The broad (comprehensive) frame consists of a single choice with 32 options. Narrow framing will yield a sequence of 5 simple choices. The sequence of 5 choices will be one of the 32 options of the broad frame. Will it be the best? Perhaps, but not very likely. A rational agent will of course engage in broad framing, but Humans are by nature narrow framers.

The ideal of logical consistency, as this example shows, is not achievable by our limited mind. Because we are susceptible to WY SIATI and averse to mental effort, we tend to make decisions as problems arise, even when we are specifically instructed to consider them jointly. We have neither the inclination nor the mental resources to enforce consistency on our preferences, and our preferences are not magically set to be coherent, as they are in the rational-agent model.Samuelson's ProblemThe great Paul Samuelson-a giant among the economists of the twentieth century-famously asked a friend whether he would accept a gamble on the toss of a coin in which he could lose $100 or win $200. His friend responded, "I won't bet because I would feel the $100 loss more than the $200 gain. But I'll take you on if you promise to let me make 100 such bets." Unless you are a decision theorist, you probably share the intuition of Samuelson's friend, that playing a very favorable but risky gamble multiple times reduces the subjective risk. Samuelson found his friend's answer interesting and went on to analyze it. He proved that under some very specific conditions, a utility maximizer who rejects a single gamble should also reject the offer of many.

Remarkably, Samuelson did not seem to mind the fact that his proof, which is of course valid, led to a conclusion that violates common sense, if not rationality: the offer of a hundred gambles is so attractive that no sane person would reject it. Matthew Rabin and Richard Thaler pointed out that "the aggregated gamble of one hundred 5050 lose $100/gain $200 bets has an expected return of $5,000, with only a 1/2,300 chance of losing any money and merely a 1/62,000 chance of losing more than $1,000." Their point, of course, is that if utility theory can be consistent with such a foolish preference under any circumstances, then something must be wrong with it as a model of rational choice. Samuelson had not seen Rabin's proof of the absurd consequences of severe loss aversion for small bets, but he would surely not have been surprised by it. His willingness even to consider the possibility that it could be rational to reject the package testifies to the powerful hold of the rational model.

Let us assume that a very simple value function describes the preferences of Samuelson's friend (call him Sam). To express his aversion to losses Sam first rewrites the bet, after multiplying each loss by a factor of 2. He then computes the expected value of the rewritten bet. Here are the results, for one, two, or three tosses. They are sufficiently instructive to deserve some Bght iciof 2

You can see in the display that the gamble has an expected value of 50. However, one toss is worth nothing to Sam because he feels that the pain of losing a dollar is twice as intense as the pleasure of winning a dollar. After rewriting the gamble to reflect his loss aversion, Sam will find that the value of the gamble is 0.

Now consider two tosses. The chances of losing have gone down to 25%. The two extreme outcomes (lose 200 or win 400) cancel out in value; they are equally likely, and the losses are weighted twice as much as the gain. But the intermediate outcome (one loss, one gain) is positive, and so is the compound gamble as a whole. Now you can see the cost of narrow framing and the magic of aggregating gambles. Here are two favorable gambles, which individually are worth nothing to Sam. If he encounters the offer on two separate occasions, he will turn it down both times. However, if he bundles the two offers together, they are jointly worth $50!

Things get even better when three gambles are bundled. The extreme outcomes still cancel out, but they have become less significant. The third toss, although worthless if evaluated on its own, has added $62.50 to the total value of the package. By the time Sam is offered five gambles, the expected value of the offer will be $250, his probability of losing anything will be 18.75%, and his cash equivalent will be $203.125. The notable aspect of this story is that Sam never wavers in his aversion to losses. However, the aggregation of favorable gambles rapidly reduces the probability of losing, and the impact of loss aversion on his preferences diminishes accordingly.

Now I have a sermon ready for Sam if he rejects the offer of a single highly favorable gamble played once, and for you if you share his unreasonable aversion to losses: I sympathize with your aversion to losing any gamble, but it is costing you a lot of money. Please consider this question: Are you on your deathbed? Is this the last offer of a small favorable gamble that you will ever consider? Of course, you are unlikely to be offered exactly this gamble again, but you will have many opportunities to consider attractive gambles with stakes that are very small relative to your wealth. You will do yourself a large financial favor if you are able to see each of these gambles as part of a bundle of small gambles and rehearse the mantra that will get you significantly closer to economic rationality: you win a few, you lose a few. The main purpose of the mantra is to control your emotional response when you do lose. If you can trust it to be effective, you should remind yourself of it when deciding whether or not to accept a small risk with positive expected value. Remember these qualifications when using the mantra:

It works when the gambles are genuinely independent of each other; it does not apply to multiple investments in the same industry, which would all go bad together.

It works only when the possible loss does not cause you to worry about your total wealth. If you would take the loss as significant bad news about your economic future, watch it!

It should not be applied to long shots, where the probability of winning is very small for each bet.

If you have the emotional discipline that this rule requires, Bght l d for e you will never consider a small gamble in isolation or be loss averse for a small gamble until you are actually on your deathbed-and not even then.

This advice is not impossible to follow. Experienced traders in financial markets live by it every day, shielding themselves from the pain of losses by broad framing. As was mentioned earlier, we now know that experimental subjects could be almost cured of their loss aversion (in a particular context) by inducing them to "think like a trader," just as experienced baseball card traders are not as susceptible to the endowment effect as novices are. Students made risky decisions (to accept or reject gambles in which they could lose) under different instructions. In the narrow-framing condition, they were told to "make each decision as if it were the only one" and to accept their emotions. The instructions for broad framing of a decision included the phrases "imagine yourself as a trader," "you do this all the time," and "treat it as one of many monetary decisions, which will sum together to produce a 'portfolio.'" The experimenters assessed the subjects' emotional response to gains and losses by physiological measures, including changes in the electrical conductance of the skin that are used in lie detection. As expected, broad framing blunted the emotional reaction to losses and increased the willingness to take risks.

The combination of loss aversion and narrow framing is a costly curse. Individual investors can avoid that curse, achieving the emotional benefits of broad framing while also saving time and agony, by reducing the frequency with which they check how well their investments are doing. Closely following daily fluctuations is a losing proposition, because the pain of the frequent small losses exceeds the pleasure of the equally frequent small gains. Once a quarter is enough, and may be more than enough for individual investors. In addition to improving the emotional quality of life, the deliberate avoidance of exposure to short-term outcomes improves the quality of both decisions and outcomes. The typical short-term reaction to bad news is increased loss aversion. Investors who get aggregated feedback receive such news much less often and are likely to be less risk averse and to end up richer. You are also less prone to useless churning of your portfolio if you don't know how every stock in it is doing every day (or every week or even every month). A commitment not to change one's position for several periods (the equivalent of "locking in" an investment) improves financial performance.Risk PoliciesDecision makers who are prone to narrow framing construct a preference every time they face a risky choice. They would do better by having a risk policy that they routinely apply whenever a relevant problem arises. Familiar examples of risk policies are "always take the highest possible deductible when purchasing insurance" and "never buy extended warranties." A risk policy is a broad frame. In the insurance examples, you expect the occasional loss of the entire deductible, or the occasional failure of an uninsured product. The relevant issue is your ability to reduce or eliminate the pain of the occasional loss by the thought that the policy that left you exposed to it will almost certainly be financially advantageous over the long run.

A risk policy that aggregates decisions is analogous to the outside view of planning problems that I discussed earlier. The outside view shift s the focus from the specifics of the current situation to Bght pecicy tthe statistics of outcomes in similar situations. The outside view is a broad frame for thinking about plans. A risk policy is a broad frame that embeds a particular risky choice in a set of similar choices.

The outside view and the risk policy are remedies against two distinct biases that affect many decisions: the exaggerated optimism of the planning fallacy and the exaggerated caution induced by loss aversion. The two biases oppose each other. Exaggerated optimism protects individuals and organizations from the paralyzing effects of loss aversion; loss aversion protects them from the follies of overconfident optimism. The upshot is rather comfortable for the d

ecision maker. Optimists believe that the decisions they make are more prudent than they really are, and loss-averse decision makers correctly reject marginal propositions that they might otherwise accept. There is no guarantee, of course, that the biases cancel out in every situation. An organization that could eliminate both excessive optimism and excessive loss aversion should do so. The combination of the outside view with a risk policy should be the goal.

Richard Thaler tells of a discussion about decision making he had with the top managers of the 25 divisions of a large company. He asked them to consider a risky option in which, with equal probabilities, they could lose a large amount of the capital they controlled or earn double that amount. None of the executives was willing to take such a dangerous gamble. Thaler then turned to the CEO of the company, who was also present, and asked for his opinion. Without hesitation, the CEO answered, "I would like all of them to accept their risks." In the context of that conversation, it was natural for the CEO to adopt a broad frame that encompassed all 25 bets. Like Sam facing 100 coin tosses, he could count on statistical aggregation to mitigate the overall risk.Speaking of Risk Policies

"Tell her to think like a trader! You win a few, you lose a few."

"I decided to evaluate my portfolio only once a quarter. I am too loss averse to make sensible decisions in the face of daily price fluctuations."

"They never buy extended warranties. That's their risk policy."

"Each of our executives is loss averse in his or her domain. That's perfectly natural, but the result is that the organization is not taking enough risk."

Keeping Score Except for the very poor, for whom income coincides with survival, the main motivators of money-seeking are not necessarily economic. For the billionaire looking for the extra billion, and indeed for the participant in an experimental economics project looking for the extra dollar, money is a proxy for points on a scale of self-regard and achievement. These rewards and punishments, promises and threats, are all in our heads. We carefully keep score of them. They shape o C Th5ur preferences and motivate our actions, like the incentives provided in the social environment. As a result, we refuse to cut losses when doing so would admit failure, we are biased against actions that could lead to regret, and we draw an illusory but sharp distinction between omission and commission, not doing and doing, because the sense of responsibility is greater for one than for the other. The ultimate currency that rewards or punishes is often emotional, a form of mental self-dealing that inevitably creates conflicts of interest when the individual acts as an agent on behalf of an organization.Mental AccountsRichard Thaler has been fascinated for many years by analogies between the world of accounting and the mental accounts that we use to organize and run our lives, with results that are sometimes foolish and sometimes very helpful. Mental accounts come in several varieties. We hold our money in different accounts, which are sometimes physical, sometimes only mental. We have spending money, general savings, earmarked savings for our children's education or for medical emergencies. There is a clear hierarchy in our willingness to draw on these accounts to cover current needs. We use accounts for self-control purposes, as in making a household budget, limiting the daily consumption of espressos, or increasing the time spent exercising. Often we pay for self-control, for instance simultaneously putting money in a savings account and maintaining debt on credit cards. The Econs of the rational-agent model do not resort to mental accounting: they have a comprehensive view of outcomes and are driven by external incentives. For Humans, mental accounts are a form of narrow framing; they keep things under control and manageable by a finite mind.

Mental accounts are used extensively to keep score. Recall that professional golfers putt more successfully when working to avoid a bogey than to achieve a birdie. One conclusion we can draw is that the best golfers create a separate account for each hole; they do not only maintain a single account for their overall success. An ironic example that Thaler related in an early article remains one of the best illustrations of how mental accounting affects behavior: Two avid sports fans plan to travel 40 miles to see a basketball game. One of them paid for his ticket; the other was on his way to purchase a ticket when he got one free from a friend. A blizzard is announced for the night of the game. Which of the two ticket holders is more likely to brave the blizzard to see the game?

The answer is immediate: we know that the fan who paid for his ticket is more likely to drive. Mental accounting provides the explanation. We assume that both fans set up an account for the game they hoped to see. Missing the game will close the accounts with a negative balance. Regardless of how they came by their ticket, both will be disappointed-but the closing balance is distinctly more negative for the one who bought a ticket and is now out of pocket as well as deprived of the game. Because staying home is worse for this individual, he is more motivated to see the game and therefore more likely to make the attempt to drive into a blizzard. These are tacit calculations of emotional balance, of the kind that System 1 performs without deliberation. The emotions that people attach to the state of their mental accounts are not acknowledged in standard economic theory. An Econ would realize that the ticket has already been paid for and cannot be returned. Its cost is "sunk" and the Econ would not care whether he had bought the ticket to the game or got it from a friend (if Eco B Th5motketns have friends). To implement this rational behavior, System 2 would have to be aware of the counterfactual possibility: "Would I still drive into this snowstorm if I had gotten the ticket free from a friend?" It takes an active and disciplined mind to raise such a difficult question.

A related mistake afflicts individual investors when they sell stocks from their portfolio: You need money to cover the costs of your daughter's wedding and will have to sell some stock. You remember the price at which you bought each stock and can identify it as a "winner," currently worth more than you paid for it, or as a loser. Among the stocks you own, Blueberry Tiles is a winner; if you sell it today you will have achieved a gain of $5,000. You hold an equal investment in Tiffany Motors, which is currently worth $5,000 less than you paid for it. The value of both stocks has been stable in recent weeks. Which are you more likely to sell?

A plausible way to formulate the choice is this: "I could close the Blueberry Tiles account and score a success for my record as an investor. Alternatively, I could close the Tiffany Motors account and add a failure to my record. Which would I rather do?" If the problem is framed as a choice between giving yourself pleasure and causing yourself pain, you will certainly sell Blueberry Tiles and enjoy your investment prowess. As might be expected, finance research has documented a massive preference for selling winners rather than losers-a bias that has been given an opaque label: the disposition effect.

The disposition effect is an instance of narrow framing. The investor has set up an account for each share that she bought, and she wants to close every account as a gain. A rational agent would have a comprehensive view of the portfolio and sell the stock that is least likely to do well in the future, without considering whether it is a winner or a loser. Amos told me of a conversation with a financial adviser, who asked him for a complete list of the stocks in his portfolio, including the price at which each had been purchased. When Amos asked mildly, "Isn't it supposed not to matter?" the adviser looked astonished. He had apparently always believed that the state of the mental account was a valid consideration.

Amos's guess about the financial adviser's beliefs was probably right, but he was wrong to dismiss the buying price as irrelevant. The purchase price does matter and should be considered, even by Econs. The disposition effect is a costly bias because the question of whether to sell winners or losers has a clear answer, and it is not that it makes no difference. If you care about your wealth rather than your immediate emotions, you will sell the loser Tiffany Motors and hang on to the winning Blueberry Tiles. At least in the United States, taxes provide a strong incentive: realizing losses reduces your taxes, while selling winners exposes you to taxes. This elementary fact of financial life is actually known to all American investors, and it determines the decisions they make during one month of the year-investors sell more losers in December, when taxes are on their mind. The tax advantage is available all year, of course, but for 11 months of the year mental accounting prevails over financial common sense. Another argument against selling winners is the well-documented market anomaly that stocks that recently gained in value are likely to go on gaining at least for a short while. The net effect is large: the expected after-tax extra return of selling Tiffany rather than Blueberry is 3.4% over the next year. Cl B Th5inge liosing a mental account with a gain is a pleasure, but it is a pleasure you pay for. The mistake is not one that an Econ would ever make, and experienced investors, who are using their System 2, are less susceptible to it than are novices.

A rational decision maker is interested only in the future consequences of current investments. Justifying earlier mistakes is not among the Econ's concerns. The decision to invest additional resources in a losing account, when better investments are available, is known as the sunk-cost fallacy, a costly mistake that is observed in decisions large and small. Driving into the blizzard because one paid for tickets is a sunk-cost error.

Imagine a company that has already spent $50 million on a project. The project is now behind schedule and the forecasts of its ultimate returns are less favorable than at the initial planning stage. An additional investment of $60 million is required to give the project a chance. An alternative proposal is to invest the same amount in a new project that currently looks likely to bring higher returns. What will the company do? All too often a company afflicted by sunk costs drives into the blizzard, throwing good money after bad rather than accepting the humiliation of closing the account of a costly failure. This situation is in the top-right cell of the fourfold pattern, where the choice is between a sure loss and an unfavorable gamble, which is often unwisely preferred.

The escalation of commitment to failing endeavors is a mistake from the perspective of the firm but not necessarily from the perspective of the executive who "owns" a floundering project. Canceling the project will leave a permanent stain on the executive's record, and his personal interests are perhaps best served by gambling further with the organization's resources in the hope of recouping the original investment-or at least in an attempt to postpone the day of reckoning. In the presence of sunk costs, the manager's incentives are misaligned with the objectives of the firm and its shareholders, a familiar type of what is known as the agency problem. Boards of directors are well aware of these conflicts and often replace a CEO who is encumbered by prior decisions and reluctant to cut losses. The members of the board do not necessarily believe that the new CEO is more competent than the one she replaces. They do know that she does not carry the same mental accounts and is therefore better able to ignore the sunk costs of past investments in evaluating current opportunities.

The sunk-cost fallacy keeps people for too long in poor jobs, unhappy marriages, and unpromising research projects. I have often observed young scientists struggling to salvage a doomed project when they would be better advised to drop it and start a new one. Fortunately, research suggests that at least in some contexts the fallacy can be overcome. The sunk-cost fallacy is identified and taught as a mistake in both economics and business courses, apparently to good effect: there is evidence that graduate students in these fields are more willing than others to walk away from a failing project.RegretRegret is an emotion, and it is also a punishment that we administer to ourselves. The fear of regret is a factor in many of the decisions that people make ("Don't do this, you will regret it" is a common warning), and the actual experience of regret is familiar. The emotional state has been well described by two Dutch psychologists, who noted that regret is "accompanied by feelings that one should have known better, by a B Th5="4ncesinking feeling, by thoughts about the mistake one has made and the opportunities lost, by a tendency to kick oneself and to correct one's mistake, and by wanting to undo the event and to get a second chance." Intense regret is what you experience when you can most easily imagine yourself doing something other than what you did.

Regret is one of the counterfactual emotions that are triggered by the availability of alternatives to reality. After every plane crash there are special stories about passengers who "should not" have been on the plane-they got a seat at the last moment, they were transferred from another airline, they were supposed to fly a day earlier but had had to postpone. The common feature of these poignant stories is that they involve unusual events-and unusual events are easier than normal events to undo in imagination. Associative memory contains a representation of the normal world and its rules. An abnormal event attracts attention, and it also activates the idea of the event that would have been normal under the same circumstances.

To appreciate the link of regret to normality, consider the following scenario: Mr. Brown almost never picks up hitchhikers. Yesterday he gave a man a ride and was robbed.

Mr. Smith frequently picks up hitchhikers. Yesterday he gave a man a ride and was robbed.

Who of the two will experience greater regret over the episode?

The results are not surprising: 88% of respondents said Mr. Brown, 12% said Mr. Smith.

Regret is not the same as blame. Other participants were asked this question about the same incident: Who will be criticized most severely by others?

The results: Mr. Brown 23%, Mr. Smith 77%.