Theory of the Earth - Volume I Part 21
Library

Volume I Part 21

It will now appear, that what cannot be done in either the one or other of those two methods, may in a great degree, or with considerable propriety, be performed in employing both.

Thus, whether for the economical purposes of life, or the natural history of fossil coal, those strata should be considered both with regard to the purity of their composition as inflammable matter deposited at the bottom of the sea, and to the changes which they have afterwards undergone by the operation of subterranean heat and distillation.

We have now considered the original matter of which coal strata are composed to be of two kinds; the one pure bitumen or coal, as being perfectly inflammable or combustible; the other an earthy matter, with which proper coal may be variously mixed in its composition, or intimately connected, in subsiding from that suspended state by which it had been carried in the ocean. It is a matter of great importance, in the physiology of this globe, to know that the proper substance of coal may be thus mixed with heterogeneous bodies; for, supposing that this earthy matter, which has subsided in the water along with coal, be no farther connected with the combustible substance of those strata, than that it had floated in the waters of the ocean, and subsided _pari pa.s.su_ with the proper materials of the coal, we hence learn a great deal with regard to the state in which the inflammable matter must have been at the time of its formation into strata. This will appear by considering, that we find schistus mixed with coal in the most equal or uniform manner, and in almost every conceivable degree, from the purest coal to the most perfect schistus. Hence we have reason to conclude, that, at the formation of those strata, the bituminous matter, highly subtilised, had been uniformly mixed with the earth subsiding in the water.

Not only is the bituminous matter of coal found mixed in every different proportion with the earthy or uninflammable materials of strata, but the coaly or bituminous composition is found with perhaps every different species of substance belonging to strata. This is certain, that we have the coaly matter intimately mixed with argillaceous and with calcareous strata.

Thus it will appear, that it is no proper explanation of the formation of coal strata, to say that vegetable matter is the basis of those strata; for though, in vegetation, a substance proper for the formation of bituminous matter is produced, it remains to know by what means, from a vegetable body, this bituminous matter is produced, and how it comes to be diffused in that subtile state by which it may be uniformly mixed with the most impalpable earth in water. Could we once resolve this question, every other appearance might be easily explained. Let us therefore now endeavour to discover a principle for the resolving of this problem.

There are two ways in which vegetable bodies may be, in part at least, resolved into that subtilised state of bituminous matter after which we inquire; the one of these is by means of fire, the other by water. We shall now consider these severally as the means of forming bituminous strata, although they may be both employed by nature in this work.

When vegetable bodies are made to burn, there is always more or less of a fuliginous substance formed; but this fuliginous substance is no other than a bituminous body in that subtilised state in which it is indefinitely divided, and may be mixed uniformly with any ma.s.s of matter equally subtilised with itself. But this is precisely what we want, in order to compose the strata of coal in question. If, therefore, there were to be found in the ocean such a fund of this fuliginous substance as might suffice for the formation of bituminous strata, no difficulty would be left in explaining the original of fossil coal. But tho'

sufficient quant.i.ty of this fuliginous matter might not be found for the explanation of natural appearances, yet there cannot be a doubt that more or less of this matter must be produced in the mineral operations of the globe, and be found precisely in that place where it is required for the forming of those strata of coal.

In order to conceive this, we are to consider, that there are actually great quant.i.ties of coal strata in a charred state, which indicates that all their more volatile oleaginous or fuliginous matter had been separated by force of subterranean heat; and, we are to suppose that this had been transacted at the bottom of the ocean: Consequently, a subtile oleaginous, bituminous, or fuliginous substance, must have been diffused in that ocean; and this bituminous matter would be employed in forming other strata, which were then deposited at the bottom of the waters.

But besides this quant.i.ty of bituminous matter which is necessarily formed in the mineral operations of the earth, and with regard to the quant.i.ty of which we can never form a proper estimate, there must enter into this same calculation all the fuliginous matter that is formed in burning bodies upon the surface of this earth. This bituminous matter of smoke is first delivered into the atmosphere, but ultimately it must be settled at the bottom of the sea. Hence though, compared with the quant.i.ty that we think required, each revolution of the globe produces but a little in our estimation, yet the progress of time, in reforming worlds, may produce all that is necessary in the formation of our strata.

There now remains to explain the other way in which bituminous matter may be obtained from vegetable bodies, that is, by means of water. For this purpose we must begin with a part of natural history that will throw some light upon the subject.

All the rivers in Scotland run into the sea tinged with a brown substance; this is most evident in some of them after a flood, and while yet the river is swelled; but, in travelling to the north of Scotland in the summer season, without any rain, I saw all the rivers, without exception, of a brown colour, compared with a river of more clear water.

This colour proceeds from the moss water, as it is called, which runs into the rivers, or the infusion of that vegetable substance which forms combustible turf, called peat. Now, this moss water leaves, upon evaporation, a bituminous substance, which very much resembles fossil coal. Therefore, in order to employ this vegetable infusion, delivered into the ocean for the purpose of forming bituminous strata at its bottom, it is only required to make this bituminous matter separate and subside.

If now we consider the immense quant.i.ty of inflammable vegetable substance, dissolved in water, that is carried into the sea by all the rivers of the earth, and the indefinite s.p.a.ce of time during which those rivers have been pouring in that oily matter into the sea; and if we consider, that the continual action of the sun and atmosphere upon this oily substance tends, by insp.i.s.sation, to make it more and more dense or bituminous, we cannot hesitate in supposing a continual separation of this bituminous matter or insp.i.s.sated oil from the water, and a precipitation of it to the bottom of the sea. This argument is corroborated by considering, that, if it were otherwise, the water of the sea must have, during the immense time that rivers are proved to have run, be strongly impregnated with that oily or bituminous substance; but this does not appear; therefore we are to conclude, that there must be the means of separating that substance from the water in which it had been dissolved.

If there is thus, from the continual perishing of animal and vegetable bodies upon the surface of this earth and in the sea, a certain supply of oily or bituminous matter given to the ocean, then, however small a portion of this shall be supposed the whole oily or inflammable matter produced upon the surface of the earth, or however long time it may require for thus producing a stratum or considerable body of coal, we must still see in this a source of the materials proper for the production of that species of strata in the bottom of the sea.

We have now considered the proper materials of which pure fossil coal is chiefly formed; we have at present to consider what should be the appearances of such a substance as this collected at the bottom of the sea, and condensed or consolidated by compression and by heat. We should thus have a body of a most uniform structure, black, breaking with a polished surface, and more or less fusible in the fire, or burning with more or less smoke and flame, in proportion as it should be distilled or insp.i.s.sated, less or more, by subterranean heat. But this is the description of our purest fossil coals, which burn in giving the greatest quant.i.ty of heat, and leave the smallest quant.i.ty of ashes.

In order to form another regular species of coal, let us suppose that, along with the bituminous substance now considered, there shall be floating in the water of the ocean a subtile earthy substance, and that these two different substances shall subside together in an uniform manner, to produce a stratum which shall be covered with immense weight, compressed, condensed, and consolidated as before, we should thus have produced a most h.o.m.ogeneous or uniform body to appearance, but not so in reality. The mixture of heterogeneous matter, in this case, is too minute to be discovered simply by inspection; it must require deep reflection upon the subject, with the help of chemical a.n.a.lysis, to understand the const.i.tution of this body, and judge of all the circ.u.mstances or particulars in which it differs from the former. It is worth while to examine this subject with some attention, as it will give the most instructive view of the composition of bituminous strata, both those which are not considered as coal, and also the different species of that mineral body.

In the first place then, if the mixture of those two different substances had been sufficiently perfect, and the precipitation uniform, the solid body of coal resulting from this mixture, would not only appear h.o.m.ogeneous, but might break equally or regularly in all directions; but the fracture of this coal must visibly differ from the former, so far as the fracture of this heterogeneous coal cannot have the polished surface of the pure bituminous body; for, the earthy matter that is interposed among the bituminous particles must affect the fracture in preventing its surface from being perfectly smooth. This imperfect plane of the fracture may be improved by polishing; in which case the body might be sufficiently smooth to have an agreeable polish; but it cannot have a perfect polish like a h.o.m.ogeneous body, or appear with that gla.s.sy surface which is naturally in the fracture of the pure bituminous coal.

But this is also a perfect description of that species of coal which is called in England Kennel coal, and in Scotland Parrot coal. It is so uniform in its substance that it is capable of being formed on the turning loom; and it receives a certain degree of polish, resembling bodies of jet.

Thus, we have a species of coal in which we shall find but a small degree of fusibility, although it may not be charred in any degree.

Such an infusible coal may therefore contain a great deal of aqueous substance, and volatile oily matter; consequently may burn with smoke and flame. But this same species of coal may also occasionally be charred more or less by the operation of subterranean heat; and, in that case, we should have a variety of coal which could only be distinguished, from a similar state of pure bituminous coal, by the ashes which they leave in burning. At least, this must be the case, when both species are, by sufficient distillation, reduced to the state of what may be properly termed a chemical coal.

But in the natural state of its composition, we find those strata of kennel or parrot coal, possessing a peculiar property, which deserves to be considered, as still throwing more light upon the subject.

We have been representing these strata of coal as h.o.m.ogeneous to appearance, and as breaking indifferently in all directions; this last, perhaps, is not so accurate; for they would seem to break chiefly into two directions, that is, either parallel or perpendicular to the bed.

Thus we have this coal commonly in rectangular pieces, in which it is extremely difficult to distinguish the direction of the bed, or stratification of the ma.s.s. By an expert eye, however, this may be in general, or at least sometimes, distinguished, and then, by knowing the habit of the coal in burning, a person perfectly ignorant of the philosophy of the matter may exhibit a wonderful sagacity, or even of power over future events, in applying this body to fire; for, at his pleasure, and unknown to those who are not in the secret; he may apparently, in equal circ.u.mstances, make this coal either kindle quietly, or with violent cracking and explosions, throwing its splinters at a distance.

The explanation lies in this, that, though the rectangular ma.s.s of coal appears extremely uniform in its structure, it is truly a stratified ma.s.s; it is therefore affected, by the sudden approach of fire in a very different manner, according as the edge of the stratum, which is seen in four of the sides of this supposed cube, shall be applied to the fire, or the other two sides, which are in the line of the stratum, or parallel to the bed of coal. The reason of this phenomenon now remains to be considered.

When the edge of the coal is exposed to the fire, the stratification of the coal is opened gradually by the heat and expanding vapours, as a piece of wood, of a similar shape, would be by means of wedges placed in the end way of the timber. The coal then kindles quietly, and quickly flames, while the ma.s.s of this bituminous schistus is opening like the leaves of a book, and thus exhibits an appearance in burning extremely like wood. But let the fire be applied to the middle of the bed, instead of the edge of the leaves, and we shall see a very different appearance; for here the expanded aqueous vapours, confined between the _laminae_, form explosions, in throwing off splinters from the kindling ma.s.s; and this ma.s.s of coal takes fire with much noise and disturbance.

The ashes of this coal may be determined as to quality, being in general a subtile white earth; but, as to quant.i.ty, the measure of that earth produces an indefinite variety in this species of coal; for, from the kennel or parrot coal, which is valuable for its burning with much flame, to that black schistus which our masons use in drawing upon stone, and which, though combustible in some degree, is not thought to be a coal, there is a perfect gradation, in which coal may be found with every proportion of this earthy alloy.

Among the lowest species of this combustible schistus are those argillaceous strata in Yorkshire from whence they procure alum in burning great heaps of this stone, which also contains sulphur, to impregnate the aluminous earth with its acid. We have also, in this country, strata which differ from those aluminous schisti only in the nature of the earth, with which the bituminous sediment is mixed. In the strata now considered, the earth, precipitated with the bituminous matter, being calcareous, has produced a limestone, which, after burning especially, is perfectly fissile.

Therefore, with regard to the composition of mineral coal, the theory is this. That inflammable, vegetable, and animal substances, in a subtilised state, had subsided in the sea, being mixed more or less with argillaceous, calcareous, and other earthy substances in an impalpable state. Now, the chemical a.n.a.lysis of fossil coal justifies that theory; for, in the distillation of the inflammable or oily coal, we procure volatile alkali, as might be naturally expected.

Thus we have considered fossil coal as various, both in its state and composition; we have described coal which is of the purest composition, as well as that which is most impure or earthy; and we have shown that there is a gradation, from the most bituminous state in which those strata had been formed in being deposited at the bottom of the sea, to the most perfect state of a chemical coal, to which they have been brought by the operation of subterranean fire or heat.

We have been hitherto considering fossil coal as formed of the impalpable parts of inflammable bodies, united together by pressure, and made to approach in various degrees to the nature of a chemical coal, by means of subterranean heat; because, from the examination of those strata, many of them have evidently been formed in this manner.

But vegetable bodies macerated in water, and then consolidated by compression, form a substance of the same kind, almost undistinguishable from some species of fossil coal. We have an example of this in our turf pits or peat mosses; when this vegetable substance has been compressed under a great load of earth, which sometimes happens, it is much consolidated, and hardens, by drying, into a black body, not afterwards dilutable or penetrated by water, and almost undistinguishable in burning from mineralised bodies of the same kind.

Also, when fossil wood has been condensed by compression and changed by the operation of heat, as it is frequently found in argillaceous strata, particularly in the aluminous rock upon the coast of Yorkshire, it becomes a jet almost undistinguishable from some species of fossil coal.

There cannot therefore be a doubt, that if this vegetable substance, which is formed by the collection of wood and plants in water upon the surface of the earth, were to be found in the place of fossil coal, and to undergo the mineral operations of the globe, it must at least augment the quant.i.ty of those strata, though it should not form distinct strata by itself.

It may perhaps be thought that vegetable bodies and their impalpable parts are things too far distant in the scale of magnitude to be supposed as subsiding together in the ocean; and this would certainly be a just observation with regard to any other species of bodies: But the nature of vegetable bodies is to be floatant in water; so that we may suppose them carried at any distance from the sh.o.r.e; consequently, the size of the body here makes no difference with regard to the place or order in which these are to be deposited.

The examination of fossil coal fully confirms those reasonable suppositions. For, _first_, The strata that attend coal, whether the sandstone or the argillaceous strata, commonly, almost universally, abound with the most distinct evidence of vegetable substances; this is the impressions of plants which are found in their composition.

_Secondly_, There is much fossil coal, particularly that termed in England clod coal, and employed in the iron foundry, that shows abundance of vegetable bodies in its composition. The strata of this coal have many horizontal interstices, at which the more solid shining coal is easily separated; here the fibrous structure of the compressed vegetable bodies is extremely visible; and thus no manner of doubt remains, that at least a part of this coal had been composed of the vegetable bodies themselves, whatever may have been the origin of the more compact parts where nothing is to be distinguished.

The state in which we often find fossil wood in strata gives reason to conclude that this body of vegetable production, in its condensed state, is in appearance undistinguishable from fossil coal, and may be also in great quant.i.ty; as, for example, the Bovey coal in Devonshire.

Thus the strata of fossil coal would appear to be formed by the subsidence of inflammable matter of every species at the bottom of the sea, in places distant from the sh.o.r.e, or where there had been much repose, and where the lightest and most floatant bodies have been deposited together. This is confirmed in examining those bodies of fossil coal; for, though there are often found beds of sand-stone immediately above and below the stratum of the coal, we do not find any sand mixed in the strata of the coal itself.

Having found the composition of coal to be various, but all included within certain rules which have been investigated, we may perceive in this an explanation of that diversity which is often observed among the various strata of one bed of coal. Even the most opposite species of composition may be found in the thickness of one bed, although of very little depth, that is to say, the purest bituminous coal may, in the same bed, be conjoined with that which is most earthy.

Fossil coal is commonly alternated with regular sand-stone and argillaceous strata; but these are very different bodies; therefore, it may perhaps be inquired how such different substances came to be deposited in the same place of the ocean. The answer to this is easy; we do not pretend to trace things from their original to the place in which they had been ultimately deposited at the bottom of the sea. It is enough that we find the substance of which we treat delivered into the sea, and regularly deposited at the bottom, after having been transported by the currents of the ocean. Now the currents of the ocean, however regular they may be for a certain period of time, and however long this period may be protracted, naturally change; and then the currents, which had given birth to one species of stratum in one place, will carry it to another; and the sediment which the moment before had formed a coal stratum, or a bed of that bituminous matter, may be succeeded either with the sediment of an argillaceous stratum, or covered over with a bed of sand, brought by the changed current of the sea.

We have now considered all the appearances of coal strata, so far as these depend upon the materials, and their original collection. But, as those bituminous strata have been changed in their substance by the operation of subterranean heat and insp.i.s.sation, we are now to look for the necessary consequences of this change in the body of the stratum; and also for other mineral operations common to fossil coal with consolidated strata of whatever species.

If coal, like other mineral strata, have been insp.i.s.sated and consolidated by subterranean heat, we should find them traversed with veins and fissures; and, if the matter found in those veins and fissures corresponds to that found in similar places of other strata, every confirmation will be hence given to the theory that can be expected from the consideration of those bituminous strata. But this is the case; we find those fissures filled both with calcareous, gypseous, and pyritous substances. Therefore, we have reason to conclude, that the strata of fossil coal, like every other indurated or consolidated body in the earth, has been produced, _first_, by means of water preparing and collecting materials proper for the construction of land; and, _secondly_, by the operation of internal fire or subterranean heat melting and thus consolidating every known substance of the globe.

Not only are those sparry and pyritous substances, which are more natural to coal strata, found forming veins traversing those strata in various directions, but also every other mineral vein may occasionally be found pervading coal mines, or traversing bituminous strata. Gold, silver, copper, lead, calamine, have all, in this manner, been found in coal.

There remains now only to consider those bituminous strata of fossil coal in relation to that change of situation which has happened more or less to every stratum which we examine; but which is so much better known in those of coal, by having, from their great utility in the arts of life, become a subject for mining, and thus been traced in the earth at great expense, and for a long extent.

Coal strata, which had been originally in a horizontal position, are now found sometimes standing in an erect posture, even almost perpendicular to the plane in which they had been formed. Miners therefore distinguish coal strata according as they deem them to approach to the one or other of those two extremes, in terming them either flat or edge seams or veins. Thus, it will appear, that every possible change from the original position of those strata may have happened, and are daily found from our experience in those mines.

But besides the changed position of those strata, in departing from the horizontal line or flat position in which they had been formed, there is another remarkable change, termed by miners a _trouble_ in the coal. The consideration of this change will further ill.u.s.trate the operations of nature in placing that which had been at the bottom of the sea above its surface.

Strata, that are in one place regularly inclined, may be found bended, or irregularly inclined, in following their course. Here then is a source of irregularity which often materially effects the estimates of miners, judging from what they see, of those parts which are to be explored; and this is an accident which they frequently experience.

But, without any change in the general direction of the stratum, miners often find their coal broke off abruptly, those two parts being placed upon a higher and lower situation in respect to each other, if flat beds, or separated laterally if they are edge seams. This is by miners termed a _slip, hitch_, or _d.y.k.e_.

These irregularities may either be attended with an injected body of subterraneous lava or basaltes, here termed whin-stone, or they may not be attended, at least apparently, _i.e._ immediately, with any such accident. But experienced miners know, that, in approaching to any of those injected ma.s.ses of stone, which are so frequent in this country, their coal is more and more subject to be troubled.

As there is, in this country of Scotland, two different species of mountains or hills, one composed both in matter and manner exactly similar to the Alps of Switzerland, the other of whin-stone, basaltic rock, or subterraneous lava; and as the fossil coal, argillaceous and sand-stone strata, are found variously connected with those hills, nothing can tend more to give a proper understanding, with regard to the construction of the land in general, of the globe than a view of those different bodies, which are here found much mixed together in a little s.p.a.ce of country, thus exhibiting, as it were in miniature, what may be found in other parts of the world, upon a larger scale, but not upon any other principle. I will therefore endeavour to give a short description of the mineral state of this country with regard to coal, so far as my experience and memory will serve.

This country might very properly be considered as consisting of primary and secondary mountains; not as supposing the primary mountains original and inexplicable in their formation, any more than those of the latest production, but as considering the one to be later in point of time, or posterior in the progress of things. The first are those which commonly form the alpine countries, consisting of various schisti, of quartzy stone, and granites. The second, again, are the whinstone or basaltic hills scattered up and down the low country, and evidently posterior to the strata of that country, which they break, elevate, and displace.

Thus there are in this country, as well as every where else, three things to be distinguished; first, the alpine or elevated country; secondly, the flat or low country; and, thirdly, that which has been of posterior formation to the strata which it traverses, in whatever shape or quality; whether as a mountain, or only as a vein; whether as a basaltes, a porphyry, or a granite, or only as a metal, a siliceous substance, or a spar.