The Thirst Quenchers - Part 1
Library

Part 1

The Thirst Quenchers.

by Rick Raphael.

"You know the one thing I really like about working for DivAg?" Troy Braden muttered into his face-mask pickup.

Ten yards behind Troy, and following in his ski tracks, his partner Alec Patterson paused to duck under a snow-laden spruce bough before answering. It was snowing heavily, a cold, dry crystal snow, piling up inch upon inch on the already deep snow pack of the Sawtooth Mountain range. In another ten minutes they would be above the timberline and the full force of the storm would hit them.

"Tell me, Mr. Bones," he asked as he poled easily in Troy's tracks, "what is the one thing you really like about working for the Division of Agriculture?"

Troy tracked around a trough of bitterbrush that bent and fought against the deep snow. "It's so dependable," he said, "so reliable, so unchanging. In nearly two centuries, the world has left behind the steel age; has advanced to nucleonics, tissue regeneration, autoservice bars and electronically driven yo-yos. Everyone in the world except the United States Division of Agriculture. The tried and true method is the rock up on which our integrity stands--even though it was tried more than a hundred years ago."

He dropped out of sight over a small hummock and whipped down the side of a slight depression in the slope, his skis whispering over the dry snow and sending up a churning crest of white from their tips.

Alec chuckled and poled after him into the basin. The two young junior hydrologists worked their way up the opposite slope and then again took the long, slow traverse-and-turn, traverse-and-turn path through the thinning trees and out into the open wind-driven snow field above them.

Just below the ridgeline, a shelf of packed snow jutted out for a dozen yards, flat and shielded from the wind by a brief rock face.

Troy halted in the small island in the storm and waited for Alec to reach him.

He fumbled with mittened fist at the cover of the directional radiation compa.s.s strapped to his left wrist. The outer dial rotated as soon as the cover lock was released and came to a stop pointing to magnetic north. The detector needle quartered across the northeast quadrant of the dial like a hunting dog and then came to rest at nineteen degrees, just slightly to the left of the direction of their tracks. An inner dial needle quivered between the yellow and red face of the intensity meter.

"We should be within a couple of hundred yards of the marker now,"

Troy announced as his short, chunky partner checked alongside. Alec nodded and peered through the curtain of sky-darkened snow just beyond the rock face. He could see powder spume whipping off the ridge crest twenty feet above them but the contour of the sloping ridge was quickly lost in the falling snow.

[Ill.u.s.tration]

The hydrologists leaned on their ski poles and rested for a few minutes before tackling the final cold leg of their climb. Each carried a light, cold-resistance plastic ruckpac slung over their chemically-heated light-weight ski suits.

A mile and a half below in the dense timber, their two Sno cars were parked in the shelter of a flattened and fallen spruce and they had thrown up a quick lean-to of broken boughs to give the vehicles even more protection from the storm. From there to the top, Troy was right in his a.n.a.lysis of DivAg. When G.o.d made mountain slopes too steep and timber too thick, it was a man and not a machine that had to do the job on skis; just as snow surveyors had done a century before when the old Soil Conservation Service pioneered the new science of snow hydrology.

The science had come a long way in the century from the days when teams of surveyors poked a hollow, calibrated aluminum tube into the snow pack and then read depth and weighed both tube and contents to determine moisture factors.

Those old-timers fought blizzards and avalanches from November through March in the bleak, towering peaks of the Northwest to the weathered crags of the Appalachians, measuring thousands of predesignated snow courses the last week of each winter month. Upon those readings had been based the crude, wide-margin streamflow forecasts for the coming year.

Now, a score of refined instruments did the same job automatically at hundreds of thousands of almost-inaccessible locations throughout the northern hemisphere. Or at least, almost automatically. Twenty feet above the two DivAg hydrologists and less than a hundred yards east, on the very crest of an unnamed peak in the wilderness of Idaho's Sawtooth Mountains, radiation snow gauge P11902-87 had quit sending data three days ago.

The snow-profile flight over the area showed a gap in the graphed line that flowed over the topographical map of the Sawtooths as the survey plane flew its daily scan. The hydrotech monitoring the graph reported the lapse to regional headquarters at Spokane and minutes later, a communications operator punched up the alternate transmitter for P11902-87. Nothing happened although the board showed the gauge's cobalt-60 beta and gamma still hot. Something had gone wrong with the tiny transducer transmitter. A man, or to be more precise, two men, had to replace the faulty device.

The two men and the replacement gauge, trudged out again into the face of the rising storm.

Troy and Alec pushed diagonally up the snow slope, pausing every few minutes to take new directional readings. The needles were now at right angles to them and reading well into the "hot" red division of the intensity meter. They still were ten feet below the crest and a cornice of snow hung out in a slight roof ahead of them. Both men had closed the face hatches of their insulated helmets and tiny circulators automatically went to work drawing off moisture and condensation from the treated plastic.

"Wonder if that chunk is going to stay put while we go past," Alec called, eyeing the heavy overhang. Troy paused and the two carefully looked over the snow roof and the slope that fell away sharply to their right.

"Looks like it avalanched once before," Troy commented. "Shall we operate, Dr. Patterson?"

"Better extravagant with the taxpayers' money than sorry for ourselves," Alec replied, pulling the avalanche gun from his holster.

It looked like an early-day Very pistol, with its big, straight-bore muzzle. "Let's get back a couple of feet."

They kick-turned and skied back from the sides of the cornice. Alec raised the gun and aimed at the center of the deepest segment over the overhang. The gun discharged with a m.u.f.fled "pop" and the concentrated ball of plastic explosive arced through the air, visible to the naked eye. It vanished into the snow roof and the men waited. Ten seconds later there was a geyser of flame and the smoke and snow as the charge detonated deep under the overhang. The wind whipped the cloud away and the roof still held, despite the gaping hole.

"What do you think?" Troy asked.

"One more for good measure," Alec said as he fired again, this time to the right of the first shot. The plastic detonated in another geyser of smoke and snow, but the small cloud was instantly lost as the entire overhang broke and fell the ten to twelve feet from the crest to the face of the slope and then boiled and rolled, gathering more snow and greater ma.s.s and impetus as it thundered down the slope and was lost in the storm. The dense clouds of loose powder snow raised by the avalanche whipped away in the clutches of the wind.

"Well done, Dr. Patterson," Troy called as he leaned into his poles and moved out across the newly-crushed snow on the slope.

"Thank you, Dr. Braden," Alec called in his wake, "you may proceed to the patient."

They worked past the buried radiation gauge to the crest and then turned and came slowly back along the wind ridge, following directly behind the detection needle. Troy glanced at his intensity gauge. The needle was on the "danger" line in the red. He stopped. Behind him, Alec checked his drop slowly down the windward side of the slope, reading his own meter. When his intensity needle hit the same mark, he, too, halted about thirty feet to Troy's right.

"I'm dead on," Troy said, indicating with a ski pole an imaginary line straight ahead.

"I've got it about forty-five degrees left," Alec called, marking his position and a direction line in the crust with a pole. Each moved towards the other and from the mid-point of their two markings extended with their eyes the imaginary lines to an intersecting point some thirty feet from Troy's original sighting.

"Hand me the heat tank, doctor," Troy said, turning his back to Alec, "so that we can excavate the patient." Alec unclamped a hand tank and nozzle device from his pack.

With the tank slung under his arm and with nozzle in hand, Troy moved forward another ten feet, gauging the wind velocity. He aimed to the windward of the intersecting lines and triggered the nozzle. A stream of liquid chemical melting agent shot out into the wind and then curved back and cut a hole into the snow. Troy moved the nozzle in a slow arc, making a wide circle in the snow. Then he cut a trough on the downhill side for more than twenty feet. He adjusted the nozzle head and a wider stream sprayed out to fall within the already-melting circle. The concentrated solution was diluted with melting water and spread its action. As the hydrologists watched, the snow melted into a deep hole and the chemically-warmed water torrented down the drain cut to gush out on to the snow slope and quickly refreeze as it emerged into the sub-zero air.

Troy shut off the liquid and the two men waited and watched. "The gauge was recording ninety-seven inches of pack when it quit," Alec said. "Better give 'er another squirt."

Troy fired another spray burst of chemical into the now-deep hole and then widened the drain trough once more.

Then he began spraying a three-foot wide patch from the edge of the hole back towards himself. Immediately a new trough began to form in the snow pack and the water poured off into the hole surrounding the buried gauge.

While the snow was melting, Alec had removed his skis and stuck them upright in the snow. He dropped his pack and unfastened a pair of mountain-climber's ice crampons and lashed them to his ski boots. In five minutes Troy had "burned" a sloping, ice-glazed ramp deep into the snow field, sloping down into a ten-foot deep chasm and terminating on bare wet soil. Sitting on the ground, slightly off center to one side of the original hole was the foot-round gray metal shape of radiation snow gauge P11902-87. A half-inch round tube projected upwards for three inches from the center of the round device.

Alec was down in the ice chasm, ski pole reversed in his hand.

Standing as far from the gauge as possible, he dangled a leaden cap from the end of his ski pole over the projecting tube. On the third try, the cap descended over the open end of the tube, effectively shielding the radioactive source material in the gauge. Once the cap was in place, Alec moved up to the gauge and put a lock clamp on the cap and then picked up the gauge and moved back up the ramp.

The wind was screaming across the top of the slot in the snow pack as he pushed the device over the edge and then heaved himself out into the teeth of the storm.

He could barely make out the form of Troy fifty feet east of the original position of the gauge. The tall engineer had taken the replacement gauge from his pack and was positioning it into the snow on the surface of the snow pack. The replacement was bulkier than the defective unit and it was different in design.

This was a combination radiation-sonar measuring gauge. Placed on top of an existing snow field, its sonar system kept account of the snow beneath the gauge to the surface of the soil; the radiation counter metered the fresh snow that fell on it after it was placed in position. The two readings were electronically added and fed into the transducer for automatic transmission.

Troy hollowed out a slight depression in the fresh snow and pressed the gauge into the hollow, then packed the snow back around it to keep it from being shifted by the high velocity winds until fresh snows buried it. Satisfied that it was properly set, he removed the radiation cap lock and slipped his ski pole through the ring on the cap. He backed away, lifted the cap from the gauge and then quickly moved out of the area.

Alec had stowed the bad gauge in his pack and removed a pressure pillow gauge to put into the deep hole in the snow. The man-cut chasm would serve as a partial gauge hole and, from a purely research point of view, it would be interesting to know how much snow would drift and fall back into the hole. The pressure pillow contained a quant.i.ty of antifreeze solution and some air s.p.a.ce. As the snow fell upon the pillow and piled up, its weight would press down and the pressure upon the pillow would be measured by instruments and again relayed to a small transmitter for reading back at Spokane. The pillows were used in many flat open areas where snow pack was uniform across a large level surface.

The pillow in place, Alec again climbed from the chasm and was locking on his skis when Troy slid up. The ice-dry snow was driving almost horizontally across the face of the ridge and the two engineers had to lean into the force of the wind to keep their balance. Troy fumbled a small service monitor from his parka pocket and shifted it to the new radiation gauge frequency. The signal was steady and strong and its radioactive source beam was hot.

"Now is the time for all good snow surveyors to get the h.e.l.l outta here," Alec exclaimed as he slipped his ruckpac onto his shoulders.

"The gauge O.K.?"