The Romance of Modern Invention - Part 18
Library

Part 18

Many schemes are afoot for the construction of high-speed railways.

The South-Eastern plans a monorail between Cannon Street and Charing Cross to avoid the delay that at present occurs in pa.s.sing from one station to the other. We hear also of a projected railway from London to Brighton, which will reduce the journey to half-an-hour; and of another to connect Dover and London. It has even been suggested to establish monorails on existing tracks for fast pa.s.senger traffic, the expresses pa.s.sing overhead, the slow and goods trains plodding along the double metals below.

But the most ambitious programme of all comes from the land of the Czar. M. Hippolyte Romanoff, a Russian engineer, proposes to unite St.

Petersburg and Moscow by a line that shall cover the intervening 600 miles in three hours--an improvement of ten hours on the present time-tables. He will use T-shaped supports to carry two rails, one on each arm, from which the cars are to hang. The line being thus double will permit the cars--some four hundred in number--to run to and fro continuously, urged on their way by current picked up from overhead wires. Each car is to have twelve wheels, four drivers arranged vertically and eight horizontally, to prevent derailment by gripping the rail on either side. The stoppage or breakdown of any car will automatically stop those following by cutting off the current.

In the early days of railway history lines were projected in all directions, regardless of the fact whether they would be of any use or not. Many of these lines began, where they ended, on paper. And now that the high-speed question has cropped up, we must not believe that every projected electric railway will be built, though of the ultimate prevalence of far higher speeds than we now enjoy there can be no doubt.

The following is a time-table drawn up on the two-mile-per-minute basis.

A man leaving London at 10 A.M. would reach--

Brighton 50 miles away, at 10.25 A.M.

Portsmouth 60 " " 10.30 A.M.

Birmingham 113 " " 10.57 A.M.

Leeds 188 " " 11.34 A.M.

Liverpool 202 " " 11.41 A.M.

Holyhead 262 " " 12.11 P.M.

Edinburgh 400 " " 1.20 P.M.

Aberdeen 540 " " 2.30 P.M.

What would become of the records established in the "Race to the North" and by American "fliers"?

And what about continental travel?

a.s.suming that the Channel Tunnel is built--perhaps a rather large a.s.sumption--Paris will be at our very doors. A commercial traveller will step into the lightning express at London, sleep for two hours and twenty-four minutes and wake, refreshed, to find the blue-smocked Paris porters bawling in his ear. Or even if we prefer to keep the "little silver streak" free from subterranean burrows, he will be able to catch the swift turbine steamers--of which more anon--at Dover, slip across to Calais in half-an-hour, and be at the French capital within four hours of quitting London. And if M. Romanoff's standard be reached, the latest thing in hats despatched from Paris at noon may be worn in Regent Street before two o'clock.

Such speeds would indeed produce a revolution in travelling comparable to the subst.i.tution of the steam locomotive for the stage coach. As has been pithily said, the effect of steam was to make the bulk of population travel, whereas they had never travelled before, but the effect of the electric railway will be to make those who travel travel much further and much oftener.

SEA EXPRESSES.

In the year 1836 the _Sirius_, a paddle-wheel vessel, crossed the Atlantic from Cork Harbour to New York in nineteen days. Contrast with the first steam-pa.s.sage from the Old World to the New a return journey of the _Deutschland_, a North German liner, which in 1900 averaged over twenty-seven miles an hour between Sandy Hook and Plymouth, accomplishing the whole distance in the record time of five days seven hours thirty-eight minutes.

This growth of speed is even more remarkable than might appear from the mere comparison of figures. A body moving through water is so r.e.t.a.r.ded by the inertia and friction of the fluid that to quicken its pace a force quite out of proportion to the increase of velocity must be exerted. The proportion cannot be reduced to an exact formula, but under certain conditions the speed and the power required advance in the ratio of their cubes; that is, to double a given rate of progress eight times the driving-power is needed; to treble it, twenty-seven times.

The mechanism of our fast modern vessels is in every way as superior to that which moved the _Sirius_, as the beautifully-adjusted safety cycle is to the clumsy "boneshaker" which pa.s.sed for a wonder among our grandfathers. A great improvement has also taken place in the art of building ships on lines calculated to offer least resistance to the water, and at the same time afford a good carrying capacity. The big liner, with its knife-edged bow and tapering hull, is by its shape alone eloquent of the high speed which has earned it the t.i.tle of Ocean Greyhound; and as for the fastest craft of all, torpedo-destroyers, their designers seem to have kept in mind Euclid's definition of a line--length without breadth. But whatever its shape, boat or ship may not shake itself free of Nature's laws. Her restraining hand lies heavy upon it. A single man paddles his weight-carrying dinghy along easily at four miles an hour; eight men in the pink of condition, after arduous training, cannot urge their light, slender, racing sh.e.l.l more than twelve miles in the same time.

To understand how mail boats and "destroyers" attain, despite the enormous resistance of water, velocities that would shame many a train-service, we have only to visit the stokeholds and engine-rooms of our sea expresses and note the many devices of marine engineers by which fuel is converted into speed.

We enter the stokehold through air-locks, closing one door before we can open the other, and find ourselves among sweating, grimy men, stripped to the waist. As though life itself depended upon it they shovel coal into the rapacious maws of furnaces glowing with a dazzling glare under the "forced-draught" sent down into the hold by the fans whirling overhead. The ignited furnace gases on their way to the outer air surrender a portion of their heat to the water from which they are separated by a skin of steel. Two kinds of marine boiler are used--the fire-tube and the water-tube. In fire-tube boilers the fire pa.s.ses inside the tubes and the water outside; in water-tube boilers the reverse is the case, the crown and sides of the furnace being composed of sheaves of small parallel pipes through which water circulates. The latter type, as generating steam very quickly, and being able to bear very high pressures, is most often found in war vessels of all kinds. The quality sought in boiler construction is that the heating surface should be very large in proportion to the quant.i.ty of water to be heated. Special coal, anthracite or Welsh, is used in the navy on account of its great heating power and freedom from smoke; experiments have also been made with crude petroleum, or liquid fuel, which can be more quickly put on board than coal, requires the services of fewer stokers, and may be stored in odd corners unavailable as coal bunkers.

From the boiler the steam pa.s.ses to the engine-room, whither we will follow it. We are now in a bewildering maze of clanking, whirling machinery; our noses offended by the reek of oil, our ears deafened by the uproar of the moving metal, our eyes wearied by the efforts to follow the motions of the cranks and rods.

On either side of us is ranged a series of three or perhaps even four cylinders, of increasing size. The smallest, known as the high-pressure cylinder, receives steam direct from the boiler. It takes in through a slide-valve a supply for a stroke; its piston is driven from end to end; the piston-rod flies through the cylinder-end and transmits a rotary motion to a crank by means of a connecting-rod.

The half-expanded steam is then ejected, not into the air as would happen on a locomotive, but into the next cylinder, which has a larger piston to compensate the reduction of pressure. Number two served, the steam does duty a third time in number three, and perhaps yet a fourth time before it reaches the condensers, where its sudden conversion into water by cold produces a vacuum suction in the last cylinder of the series. The secret of a marine engine's strength and economy lies then in its treatment of the steam, which, like clothes in a numerous family, is not thought to have served its purpose till it has been used over and over again.

Reciprocating (_i.e._ cylinder) engines, though brought to a high pitch of efficiency, have grave disadvantages, the greatest among which is the annoyance caused by their intense vibration to all persons in the vessel. A revolving body that is not exactly balanced runs unequally, and transmits a tremor to anything with which it may be in contact. Turn a cycle upside down and revolve the driving-wheel rapidly by means of the pedal. The whole machine soon begins to tremble violently, and dance up and down on the saddle springs, because one part of the wheel is heavier than the rest, the mere weight of the air-valve being sufficient to disturb the balance. Now consider what happens in the engine-room of high-powered vessels. On destroyers the screws make 400 revolutions a minute. That is to say, all the momentum of the pistons, cranks, rods, and valves (weighing tons), has to be arrested thirteen or fourteen times every second.

However well the moving parts may be balanced, the vibration is felt from stem to stern of the vessel. Even on luxuriously-appointed liners, with engines running at a far slower speed, the throbbing of the screw (_i.e._ engines) is only too noticeable and productive of discomfort.

We shall be told, perhaps, that vibration is a necessary consequence of speed. This is true enough of all vehicles, such as railway trains, motor-cars, cycles, which are shaken by the irregularities of the unyielding surface over which they run, but does not apply universally to ships and boats. A sail or oar-propelled craft may be entirely free from vibration, whatever its speed, as the motions arising from water are usually slow and deliberate. In fact, water in its calmer moods is an ideal medium to travel on, and the trouble begins only with the introduction of steam as motive force.

But even steam may be robbed of its power to annoy us. The steam-turbine has arrived. It works a screw propeller as smoothly as a dynamo, and at a speed that no cylinder engine could maintain for a minute without shaking itself to pieces.

The steam-turbine is most closely connected with the name of the Hon.

Charles Parsons, son of Lord Rosse, the famous astronomer. He was the first to show, in his speedy little _Turbinia_, the possibilities of the turbine when applied to steam navigation. The results have been such as to attract the attention of the whole shipbuilding world.

The principle of the turbine is seen in the ordinary windmill. To an axle revolving in a stationary bearing are attached vanes which oppose a current of air, water, or steam, at an angle to its course, and by it are moved sideways through a circular path. Mr. Parsons' turbine has of course been specially adapted for the action of steam. It consists of a cylindrical, air-tight chest, inside which rotates a drum, fitted round its circ.u.mference with rows of curved vanes. The chest itself has fixed immovably to its inner side a corresponding number of vane rings, alternating with those on the drum, and so arranged as to deflect the steam on to the latter at the most efficient angle. The diameter of the chest and drum is not constant, but increases towards the exhaust end, in order to give the expanding and weakening steam a larger leverage as it proceeds.

The steam entering the chest from the boiler at a pressure of some hundreds of pounds to the square inch strikes the first set of vanes on the drum, pa.s.ses them and meets the first set of chest-vanes, is turned from its course on to the second set of drum-vanes, and so on to the other end of the chest. Its power arises entirely from its expansive velocity, which, rather than turn a number of sharp corners, will, if possible, compel the obstruction to move out of its way. If that obstruction be from any cause difficult to stir, the steam must pa.s.s round it until its pressure overcomes the inertia. Consequently the turbine differs from the cylinder engine in this respect, that steam _can_ pa.s.s through and be wasted without doing any work at all, whereas, unless the gear of a cylinder moves, and power is exerted, all steam ways are closed, and there is no waste. In practice, therefore, it is found that a turbine is most effective when running at high speed.

The first steam-turbines were used to drive dynamos. In 1884 Mr.

Parsons made a turbine in which fifteen wheels of increasing size moved at the astonishing rate of 300 revolutions per second, and developed 10 horse-power. In 1888 followed a 120 horse-power turbine, and in 1892 one of 2000 horse-power, provided with a condenser to produce suction. So successful were these steam fans for electrical work, pumping water and ventilating mines, that Mr. Parsons determined to test them as a means of propelling ships. A small vessel 100 feet long and 9 feet in beam was fitted with three turbines--high, medium, and low pressure, of a total 2000 horse-power--a proportion of motive force to tonnage hitherto not approached. Yet when tried over the test course the _Turbinia_, as the boat was fitly named, ran in a most disappointing fashion. The screws revolved _too fast_, producing what is known as _cavitation_, or the scooping out of the water by the screws, so that they moved in a partial vacuum and utilised only a fraction of their force, from lack of anything to "bite" on. This defect was remedied by employing screws of coa.r.s.er pitch and larger blade area, three of which were attached to each of the three propeller shafts. On a second trial the _Turbinia_ attained 32-3/4 knots over the "measured mile," and later the astonishing speed of forty miles an hour, or double that of the fast Channel packets. At the Spithead Review in 1897 one of the most interesting sights was the little nimble _Turbinia_ rushing up and down the rows of majestic warships at the rate of an express train.

[Ill.u.s.tration: _H.M.S. Torpedo Destroyer "Viper." This vessel was the fastest afloat, attaining the enormous speed of 41 miles an hour. The screws were worked by turbines, giving 11,000 horse-power. She was wrecked on Alderney during the Naval Manoeuvres of 1901._]

After this success Mr. Parsons erected works at Wallsend-on-Tyne for the special manufacture of turbines. The Admiralty soon placed with him an order for a torpedo-destroyer--the _Viper_--of 350 tons; which on its trial trip exceeded forty-one miles an hour at an estimated horse-power (11,000) equalling that of our largest battleships. A sister vessel, the _Cobra_, of like size, proved as speedy.

Misfortune, however, overtook both destroyers. The _Viper_ was wrecked August 3, 1901, on the coast of Alderney during the autumn naval manoeuvres, and the _Cobra_ foundered in a severe storm on September 12 of the same year in the North Sea. This double disaster casts no reflections on the turbine engines; being attributed to fog in the one case and to structural weakness in the other. The Admiralty has since ordered another turbine destroyer, and before many years are past we shall probably see all the great naval powers providing themselves with like craft to act as the "eyes of the fleet," and travel at even higher speeds than those of the _Viper_ and _Cobra_.

The turbine has been applied to mercantile as well as warlike purposes. There is at the present time a turbine-propelled steamer, the _King Edward_, running in the Clyde on the Fairlie-Campbelltown route. This vessel, 250 feet long, 30 broad, 18 deep, contains three turbines. In each the steam is expanded fivefold, so that by the time it pa.s.ses into the condensers it occupies 125 times its boiler volume.

(On the _Viper_ the steam entered the turbine through an inlet eight inches in diameter, and left them by an outlet four feet square.) In cylinder engines thirty-fold expansion is considered a high ratio; hence the turbine extracts a great deal more power in proportion from its steam. As a turbine cannot be reversed, special turbines are attached to the two outside of the three propeller shafts to drive the vessel astern. The steamer attained 20-1/2 knots over the "Skelmorlie mile" in fair and calm weather, with 3500 horse-power produced at the turbines. The _King Edward_ is thus the fastest by two or three knots of all the Clyde steamers, as she is the most comfortable. We are a.s.sured that as far as the turbines are concerned it is impossible by placing the hand upon the steam-chest to tell whether the drum inside is revolving or not!

Every marine engine is judged by its economy in the consumption of coal. Except in times of national peril extra speed produced by an extravagant use of fuel would be severely avoided by all owners and captains of ships. At low speeds the turbine develops less power than cylinders from the same amount of steam, but when working at high velocity it gives at least equal results. A careful record kept by the managers of the Caledonian Steamship Company compares the _King Edward_ with the _d.u.c.h.ess of Hamilton_, a paddle steamer of equal tonnage used on the same route and built by the same firm. The record shows that though the paddle-boat ran a fraction of a mile further for every ton of coal burnt in the furnaces, the _King Edward_ averaged two knots an hour faster, a superiority of speed quite out of proportion to the slight excess of fuel. Were the _d.u.c.h.ess_ driven at 18-1/2 knots instead of 16-1/2 her coal bill would far exceed that of the turbine.

As an outcome of these first trials the Caledonian Company are launching a second turbine vessel. Three high-speed turbine yachts are also on the stocks; one of 700 tons, another of 1500 tons, and a third of 170 tons. The last, the property of Colonel M'Calmont, is designed for a speed of twenty-four knots.

Mr. Parsons claims for his system the following advantages: Greatly increased speed; increased carrying power of coal; economy in coal consumption; increased facilities for navigating shallow waters; greater stability of vessels; reduced weight of machinery (the turbines of the _King Edward_ weigh but one-half of cylinders required to give the same power); cheapness of attending the machinery; absence of vibration, lessening wear and tear of the ship's hull and a.s.sisting the accurate training of guns; lowered centre of gravity in the vessel, and consequent greater safety during times of war.

The inventor has suggested a cruiser of 2800 tons, engined up to 80,000 horse-power, to yield a speed of forty-four knots (about fifty miles) an hour. Figures such as these suggest that we may be on the eve of a revolution of ocean travel comparable to that made by the subst.i.tution of steam for wind power. Whether the steam-turbine will make for increased speed all round, or for greater economy, remains to be seen; but we may be a.s.sured of a higher degree of comfort. We can easily believe that improvements will follow in this as in other mechanical contrivances, and that the turbine's efficiency has not yet reached a maximum; and even if our ocean expresses, naval and mercantile, do not attain the one-mile-a-minute standard, which is still regarded as creditable to the fastest methods of land locomotion, we look forward to a time in the near future when much higher speeds will prevail, and the tedium of long voyages be greatly shortened. Already there is talk of a service which shall reduce the trans-Atlantic journey to three-and-a-half days. The means are at hand to make it a fact.

_Note._--In the recently-launched turbine destroyer _Velox_ a novel feature is the introduction of ordinary reciprocating engines fitted in conjunction with the steam turbines. These engines are of triple-compound type, and are coupled direct to the main turbines. They take steam from the boilers direct and exhaust into the high-pressure turbine. These reciprocating engines are for use at cruising speeds. When higher power is needed the steam will be admitted to the turbines direct from the boilers, and the cylinders be thrown out of gear.

MECHANICAL FLIGHT.

Few, if any, problems have so strongly influenced the imagination and exercised the ingenuity of mankind as that of aerial navigation. There is something in our nature that rebels against being condemned to the condition of "featherless bipeds" when birds, bats, and even minute insects have the whole realm of air and the wide heavens open to them.

Who has not, like Solomon, pondered upon "the way of a bird in the air" with feelings of envy and regret that he is chained to earth by his gross body; contrasting our laboured movements from point to point of the earth's surface with the easy gliding of the feathered traveller? The unrealised wish has found expression in legends of Daedalus, Pegasus, in the "flying carpet" of the fairy tale, and in the pages of Jules Verne, in which last the adventurous Robur on his "Clipper of the Clouds" antic.i.p.ates the future in a most startling fashion.

Aeromobilism--to use its most modern t.i.tle--is regarded by the crowd as the mechanical counterpart of the Philosopher's Stone or the Elixir of Life; a highly desirable but unattainable thing. At times this incredulity is transformed by highly-coloured press reports into an equally unreasonable readiness to believe that the conquest of the air is completed, followed by a feeling of irritation that facts are not as they were represented in print.

The proper att.i.tude is of course half-way between these extremes.

Reflection will show us that money, time, and life itself would not have been freely and ungrudgingly given or risked by many men--hard-headed, practical men among them--in pursuit of a Will-o'-the-Wisp, especially in a century when scientific calculation tends always to calm down any too imaginative scheme. The existing state of the aerial problem may be compared to that of a railway truck which an insufficient number of men are trying to move. Ten men may make no impression on it, though they are putting out all their strength. Yet the arrival of an eleventh may enable them to overcome the truck's inertia and move it at an increasing pace.

Every new discovery of the scientific application of power brings us nearer to the day when the truck will move. We have metals of wonderful strength in proportion to their weight; pigmy motors containing the force of giants; a huge fund of mechanical experience to draw upon; in fact, to paraphrase the Jingo song, "We've got the things, we've got the men, we've got the money too"--but we haven't as yet got the machine that can mock the bird like the flying express mocks the strength and speed of horses.