The Romance of Aircraft - Part 2
Library

Part 2

The idea has been suggested of a parachute arrangement to be attached to the upper wing of the airplane itself. This parachute would remain closed except in case of accident, when a lever operated by the pilot would cause it to open and carry the airplane safely to the ground. But the plan has never been worked out and it is impossible to say at this early date whether it would prove of much real benefit. In cases of engine failure the aviator can very often glide down safely to the earth; while in wartime, there is always the possibility that if the wings of the airplane were damaged by enemy fire the parachute also might be impaired.

An interesting use of the parachute was made by bombing airplanes and Zeppelins during the Great War. The pilots of these craft dropped flares or lights attached to parachutes, and by means of these they succeeded in locating their objectives and at the same time in "blinding" the operators of searchlights and anti-aircraft guns.

Just what the future of the parachute will be it is hard to predict. If there are to be future wars it will no doubt play an important part in them in the saving of human life.

The next few years will probably see the advent of huge aerial liners, built somewhat on the design of the Zeppelin. These great airships will travel in regular routes across the important countries of the world, bearing heavy cargoes of merchandise and large numbers of pa.s.sengers.

And we can easily imagine that in that day every traveler in the air will be supplied with a parachute as the ocean traveler of to-day is provided with a life-belt. Thus the simple little parachute will have performed its useful mission in the triumphal progress of aeronautics.

CHAPTER V

BALLOONING IN THE GREAT WAR

If you went down New York Bay during wartime you probably saw at the entrance of the harbor a United States cruiser stationed, with a "kite"

balloon attached to it, standing sentinel against enemy submarines or aircraft. From their positions high in the basket, the observers could see far below the surface of the water, for the higher one rises in the air the clearer the depths of the water become to the vision. They had powerful gla.s.ses and by means of them could see far out over the water, where at any moment a periscope might have shown its face. The observers in that sentinel balloon could spot a submarine while it was still a long way off. A telephone connection reaching from the basket to the ship below made it possible for them to report a danger instantly, and soon the news would be traveling by wireless to the waiting destroyers and chasers.

This was probably the most important war duty that was being performed by a balloon on this side of the Atlantic. But over in Europe the kite balloon did valiant service above the trenches.

The coming of the heavier-than-air machine, with its powerful motor, its bird-like body, its great speed and lifting power, seemed at first to have driven the balloon from the field as an implement of war. And in fact, in the early days of the World War the airplane was almost exclusively employed by the Allies for scouting over the lines, watching enemy movements, directing artillery fire, and keeping the general staff informed of the strategic situation.

It was the Hun who first discovered that many of these duties could be far more efficiently performed by the "kite" or "sausage" balloon--the drachen balloon, as the Germans called it. This was not originally a German invention. It was first proposed in 1845 by an Englishman named Archibald Douglas, but his experiments did not meet with success and the undertaking was allowed to drop. Two Prussian officers, Major von Pa.r.s.eval and Captain von Sigsfeld, seizing upon the idea of the kite balloon as of great military importance, set themselves to developing it. In 1894 they produced the first drachen balloon, and it was this that gave the German army at the outbreak of the war one of its greatest advantages over the Allies.

The chief requirement for any observation balloon is that it shall rest in the air absolutely steady and motionless, so that the observer may not be interrupted in his study of the enemy's territory. The spherical balloon is apt to sway and roll with every puff of wind. The "kite"

balloon therefore is a great improvement. Long and sausage-shaped, it combines the features of a kite and a balloon. Set at an angle to the wind, it is supported partly by the gas with which the main envelope is inflated, and partly by the action of the breeze blowing against its under surface, exactly as a kite is held in the air.

A smaller balloon, or steering ballonet, as it is called, is attached to the stern of the kite balloon and acts as a rudder. This ballonet is not inflated with the gas. It hangs limp while the balloon ascends, but the breeze quickly rushes into its open end beneath the main envelope and fills it out. This air-rudder, as it catches the breeze, acts as a steadier for the balloon. The main envelope has also an air chamber or section at the rear, which is part.i.tioned off, and which is not filled with gas but is kept inflated by the action of the breeze; while on either side of the rudder there are two small rectangular sails, which help resist any motion of the breeze which might cause the balloon to sway.

Before the war the other large powers had made no attempts to imitate the German "drachen," although they had every opportunity of observing and studying it, and it seems very likely they actually underestimated its military importance. But when the war began, Germany surprised the Allies by the efficiency of these observation posts in the air. The fact that they were captive gave them certain advantages over the airplane for particular lines of work. They were able to direct artillery fire and keep the general staff informed of the situation over the lines.

High in the air these lookouts could spot the tiniest change in the map.

Provided with the finest instruments for observing, and connected with the artillery station or the headquarters by telephone, they could send in momently reports of the progress of the battle. While the airplane was circling the sky to watch the effects of the last artillery fire, and had to get back to the ground before it could give full instructions to the gunners, the man in the basket of the kite balloon with a telephone in his hand, could report every second just where the last sh.e.l.l struck, whether the shooting was too high or too low, and how to vary the aim to get closer to the target. He was the eye of his battery.

The story of how the French military authorities at Chalais Meudon succeeded in obtaining plans for the first French military kite balloon was one of the carefully guarded secrets of the war. In the spring of 1915 the manufacture of kite balloons was well under way in France. In record time whole battalions of them were ready for service on land and on sea. They played a gallant role in the Dardanelles in connection with the British fleet. Soon afterward they were employed over the trenches in France.

The military kite balloon's first and chief aim is the directing of artillery fire. This it can do better than the airplane, which travels at high speed and must constantly circle or fly backward and forward in order to keep close to and be able to watch the target that is being aimed at. But the observer in the balloon basket sits practically motionless, while with the aid of a powerful telescope he watches the results of the firing. Before him he has a map on which he can plot the location of the target, and through a telephone connection he can advise the men in the ground station how to vary the range.

Think how much easier it is for him to explain to the men below by word of mouth the results of his observations, than for the observer in an airplane, soaring through the sky, to send that same message in a few brief words by means of wireless.

As a matter of fact the kite balloon at the front usually carries two observers in its basket: one to work directly with the artillery and the other to do general look-out work. The first has his eye on the target which the men below are trying to hit, and watches for the explosions of sh.e.l.ls fired by his battery. But his comrade lets his gaze roam all over the horizon. He sees the movements of enemy troop trains, the ma.s.sing of men and supplies, the flashes of the enemy's batteries. Should some objective of great importance loom up in the distance, such as a convoy of ammunition, the word is pa.s.sed instantly to the battery below, and the guns are trained on it.

[Ill.u.s.tration: INFLATING A SERVICE BALLOON ON THE FIELD]

After the work in connection with the batteries, the second great role of the observation balloon is to keep the commanding officer at headquarters informed of the movements of the enemy, the effects of the firing and the general situation. The men in a balloon of this sort must know the territory very intimately, so that they can spot the tiniest change. It is their duty to discover concealed batteries and other objects behind the enemy's lines which may help the Divisional staff to lay its plans. And remember that they have no landmarks to go by. Out in that dread region of battle not a tree nor a mound has been left to vary the dull monotony of the brown earth, swept clean by the constant rain of sh.e.l.ls. So it requires sharp eyes to distinguish the carefully camouflaged batteries of the enemy.

[Ill.u.s.tration: ARMY BALLOON READY TO ASCEND]

Of course the observation balloon at the front has to be carefully protected, for it furnishes a good target for the bombs from enemy aircraft. Every kite balloon has its detachment of defending airplanes, which circle round it in wide circles, on the lookout for approaching bombing planes of the enemy. Anti-aircraft guns also stand guard against the danger. Nevertheless the observer's life is a perilous one, the more so because he is a fixed target, unable to shift his position. A story is told of the heroism of Emile Dubonnet, the wealthy French sportsman, who was observing for the French "75's" near Berry-au-Bac when he was attacked by two German taubes. Appearing suddenly out of the clouds, they swooped down upon him, hovering over his balloon and dropping sh.e.l.ls, which fortunately missed their aim. The taubes were so near to the balloon that the French were forced to stop firing lest they hit their own man. Coolly Dubonnet continued his observations of the enemy's territory, telephoning the results of their fire to the French batteries below him, until a couple of French planes arrived on the scene and drove the taubes back to their lines. So severe is the strain of constant scanning of the enemy's territory through high powered gla.s.ses that it was found necessary to draw the observation balloon down about every two hours in order to change observers. At dawn the first balloons were sent up. All day long, except for the brief intervals when observers were changed, they stood there in the sky. Often far into the night they continued to play their silent role in the great drama of war. Some of the observers in fact became so experienced that they were able to do almost as good work at night as by day. It is said that enemy guns so camouflaged that they are not visible by day not infrequently show up in the darkness.

The kite balloon is connected with the earth by means of a strong steel cable, which winds onto an immense reel. To send the balloon up, the reel is turned and the cable is played out; when it is necessary to draw the balloon to earth once more, the cable is again wound about the reel.

An electric motor is attached to the reel and turns it in one direction or the other. Through the center of the cable runs the telephone wire which connects the observer in the basket with the battery with which he works. The observer is equipped with a parachute for use in case of sudden danger. This parachute has straps like those of a man's suspenders which hold it to his back. When he springs from the balloon the parachute quickly opens and lands him gently and safely on the ground.

The kite balloon itself has been greatly improved since it was first constructed by the Germans. One of its greatest disadvantages lay in the great drag upon the cable, which when the wind was very high caused such an excessive strain that it was dangerous to use the balloon. The German "drachen" was badly "streamlined," that is to say, its shape offered great resistance to the wind. This resistance was increased by the rush of air into the open mouth of the steering ballonet.

An attempt to improve the design of the kite balloon was made by an American firm, the Goodyear Tire and Rubber Company of Akron, Ohio. They constructed a balloon which in general outline resembled the German "drachen," but which had not the steering ballonet or rudder at the stern. In its place they subst.i.tuted large flat fins at the stern, and these, while they offered less resistance and thus reduced the strain or tug of the balloon upon its cable, did not hold the balloon absolutely steady in the air, as the steering ballonet had done. In order to give great steadiness the Goodyear people designed a tail like that of a kite, consisting of a number of very small inverted parachutes. These as they caught the breeze produced a resistance which steadied the balloon after the manner of the air rudder.

The Goodyear kite balloon was not an unqualified success, and it remained for Captain Cacquot of the French army to produce the most satisfactory design. His was an almost perfect streamline model. Long and sausage-shaped like the German "drachen," it has, in place of the steering ballonet, three small ballonets at the stern which are in reality inflated fins. They are filled with air which is fed to them by a mouth or opening underneath the main envelope. These inflated fins, while acting as a rudder to hold the balloon steady in the air, do not offer the resistance that was caused by either the flat fins of the Goodyear model or the open-mouthed steering ballonet of the old type.

Thus the French streamline balloon came to be the accepted model of the Allied nations, and proved itself an efficient arm of the service during the war.

Ballooning in itself will probably never be the sport that it once was, for the coming of the swift motor-driven dirigible and the still swifter airplane has made the old wind-driven vessel a hopelessly obsolete contrivance. It is therefore all the more interesting to know that the captive balloon, developed to highest form of efficiency, gave good service in the war against Germany and made itself a reliable and valuable servant of our armies, accomplishing its mission in a particular field in which neither the airship nor the airplane was able to compete with it successfully.

PART II

CHAPTER I

DEVELOPMENT OF THE DIRIGIBLE

No sooner had the Montgolfiers and their colleagues constructed their earliest balloon models than scientific men and the general public, aroused by the possibilities of navigating the heavens, set themselves to devising schemes for steering aircraft. For of course the one great faculty which the balloon lacked was the ability to choose its own course. Once it arose into the air it was carried along in the direction and at the speed of whatever wind happened to be blowing.

Interest in the problem waxed so hot that there was scarcely a banker, farmer or grocer of those early days who did not have his private theory concerning the steering of balloons. Many learned essays on the subject were written, and many foolish solutions were advanced, among them that of harnessing a flock of birds to the balloon, with reins for guiding them. But the idea every one thought most likely was that of oars, sails and a rudder.

Now there are several very good reasons why this method, adapted from sailing vessels, is useless when it comes to a balloon. In the first place, no sooner has the balloon risen to its maximum height into the atmosphere than it is caught in an air-current and carried along at exactly the same rate of speed as that at which the air itself is moving. To the occupants it seems to be hanging motionless in a dead calm, where there is no breeze blowing. Since its motion and that of the surrounding air are exactly equal, there is of course no resisting pressure against a sail, which simply hangs dead and lifeless.

To "row" in the air, on the other hand, would require oars of enormous size or else moving at a tremendous speed and a superhuman strength would be needed for moving them. Stop to think of the great velocity and power of the wind and then try to imagine the strength that would be necessary to row against this tide.

These facts, however, did not occur to the early experimenters, and balloons equipped with sails and oars were actually constructed. In order that they might present less resistance to the air, they were made egg-shaped, or long and cylindrical, sometimes with pointed ends, and this, at least, was an advance.

Another step in the right direction was the suggestion of paddle wheels, projecting from each side of the car, and beating the air as they revolved. This was coming very close to the correct solution, that of a revolving propeller.

But unfortunately at this early date the mechanical sciences were in their infancy, and although soon afterward the idea of a screw propeller did come up, the inventors were handicapped by the fact they knew of no other power than "hand-power" with which to drive it.

The man who might almost be called the father of the modern dirigible balloon was the French General Meusnier, an officer in the army and a man of great scientific and technical skill. Meusnier just proposed that air-bags or ballonets as they are now called be placed inside the balloon proper. By pumping air into these the balloon envelope could be filled out again when it had become partly deflated by loss of gas, for one of the great problems was to maintain the _shape_ of the balloon after a quant.i.ty of gas had escaped. This was a good idea, but unfortunately its first public trial almost resulted in a tragedy. One Duke de Chartres ordered a balloon of this sort to be built for him by the brothers Robert, Parisian mechanics. Accompanied by the Roberts themselves and another man he ascended in it in July, 1784. The balloon was fish-shaped and was equipped with oars and a rudder. No sooner had it started on its upward journey than it was caught in a violent swirl of air which tore away the oars. The opening in the neck of the balloon became closed over by the air bag inside, and there was no outlet for the gas, which expanded as the balloon rose. Undoubtedly a terrific explosion would have occurred, but the Duke, with great presence of mind, drew his sword and cut a slash ten feet long in the balloon envelope. He saved his own life and that of his comrades. The gas, escaping through the rent, allowed the balloon to settle slowly to earth, without injury to its occupants.

But the spectators did not understand the emergency, and the Duke was covered with ridicule for his supposed cowardice.

The idea of the air-bags, however, was a useful one, and in later experiments worked well.

Meusnier gave a great deal of earnest study and experiment to the dirigible balloon, and he originated a design which was far ahead of his day. He decided on an elliptical or "egg" shape for the envelope, with small air bags inside it, and he suggested using a boat shaped car, which would offer less resistance to the air than the old round basket.

The car was attached to the balloon by an absolutely rigid connection, so that it could not swing backward as the balloon drove ahead. Halfway between the car and the envelope he placed three propellers, and these, for want of any form of motor, were driven by hand pulleys.

Meusnier's design for a dirigible was the cleverest and most practical of its day, but owing to the cost, it was never actually carried out. In 1793, General Meusnier was killed at Mayence, fighting against the Prussians. After his death, little was heard of the dirigible balloon for another fifty years. Except perhaps for the novelty balloons at the country fair, the science of aeronautics slept.

The next appearance of the dirigible in history was in 1852, when the work of the Frenchman Giffard attracted widespread attention.