The Notebooks of Leonardo Da Vinci - Part 79
Library

Part 79

903.

THE SPOTS ON THE MOON.

Some have said that vapours rise from the moon, after the manner of clouds and are interposed between the moon and our eyes. But, if this were the case, these spots would never be permanent, either as to position or form; and, seeing the moon from various aspects, even if these spots did not move they would change in form, as objects do which are seen from different sides.

904.

OF THE SPOTS ON THE MOON.

Others say that the moon is composed of more or less transparent parts; as though one part were something like alabaster and others like crystal or gla.s.s. It would follow from this that the sun casting its rays on the less transparent portions, the light would remain on the surface, and so the denser part would be illuminated, and the transparent portions would display the shadow of their darker depths; and this is their account of the structure and nature of the moon. And this opinion has found favour with many philosophers, and particularly with Aristotle, and yet it is a false view-for, in the various phases and frequent changes of the moon and sun to our eyes, we should see these spots vary, at one time looking dark and at another light: they would be dark when the sun is in the West and the moon in the middle of the sky; for then the transparent hollows would be in shadow as far as the tops of the edges of those transparent hollows, because the sun could not then fling his rays into the mouth of the hollows, which however, at full moon, would be seen in bright light, at which time the moon is in the East and faces the sun in the West; then the sun would illuminate even the lowest depths of these transparent places and thus, as there would be no shadows cast, the moon at these times would not show us the spots in question; and so it would be, now more and now less, according to the changes in the position of the sun to the moon, and of the moon to our eyes, as I have said above.

905.

OF THE SPOTS ON THE MOON.

It has been a.s.serted, that the spots on the moon result from the moon being of varying thinness or density; but if this were so, when there is an eclipse of the moon the solar rays would pierce through the portions which were thin as is alleged [Footnote 3-5: Eclissi. This word, as it seems to me, here means eclipses of the sun; and the sense of the pa.s.sage, as I understand it, is that by the foregoing hypothesis the moon, when it comes between the sun and the earth must appear as if pierced,-we may say like a sieve.]. But as we do not see this effect the opinion must be false.

Others say that the surface of the moon is smooth and polished and that, like a mirror, it reflects in itself the image of our earth. This view is also false, inasmuch as the land, where it is not covered with water, presents various aspects and forms. Hence when the moon is in the East it would reflect different spots from those it would show when it is above us or in the West; now the spots on the moon, as they are seen at full moon, never vary in the course of its motion over our hemisphere. A second reason is that an object reflected in a convex body takes up but a small portion of that body, as is proved in perspective [Footnote 18: come e provato. This alludes to the accompanying diagram.]. The third reason is that when the moon is full, it only faces half the hemisphere of the illuminated earth, on which only the ocean and other waters reflect bright light, while the land makes spots on that brightness; thus half of our earth would be seen girt round with the brightness of the sea lighted up by the sun, and in the moon this reflection would be the smallest part of that moon. Fourthly, a radiant body cannot be reflected from another equally radiant; therefore the sea, since it borrows its brightness from the sun,-as the moon does-, could not cause the earth to be reflected in it, nor indeed could the body of the sun be seen reflected in it, nor indeed any star opposite to it.

906.

If you keep the details of the spots of the moon under observation you will often find great variation in them, and this I myself have proved by drawing them. And this is caused by the clouds that rise from the waters in the moon, which come between the sun and those waters, and by their shadow deprive these waters of the sun's rays. Thus those waters remain dark, not being able to reflect the solar body.

907.

How the spots on the moon must have varied from what they formerly were, by reason of the course of its waters.

On the moon's halo.

908.

OF HALOS ROUND THE MOON.

I have found, that the circles which at night seem to surround the moon, of various sizes, and degrees of density are caused by various gradations in the densities of the vapours which exist at different alt.i.tudes between the moon and our eyes. And of these halos the largest and least red is caused by the lowest of these vapours; the second, smaller one, is higher up, and looks redder because it is seen through two vapours. And so on, as they are higher they will appear smaller and redder, because, between the eye and them, there is thicker vapour. Whence it is proved that where they are seen to be reddest, the vapours are most dense.

On instruments for observing the moon (909. 910).

909.

If you want to prove why the moon appears larger than it is, when it reaches the horizon; take a lens which is highly convex on one surface and concave on the opposite, and place the concave side next the eye, and look at the object beyond the convex surface; by this means you will have produced an exact imitation of the atmosphere included beneath the sphere of fire and outside that of water; for this atmosphere is concave on the side next the earth, and convex towards the fire.

910.

Construct gla.s.ses to see the moon magnified.

[Footnote: See the Introduction, p. 136, Fracastoro says in his work h.o.m.ocentres: "Per dua specilla ocularla si quis perspiciat, alteri altero superposito, majora multo et propinquiora videbit omnia.-Quin imo quaedam specilla ocularia fiunt tantae densitatis, ut si per ea quis aut lunam, aut aliud siderum spectet, adeo propinqua illa iudicet, ut ne turres ipsas excedant" (sect. II c. 8 and sect. III, c. 23).]

I. THE STARS. On the light of the stars (911-913). 911. The stars are visible by night and not by day, because we are eneath the dense atmosphere, which is full of innumerable articles of moisture, each of which independently, when the ays of the sun fall upon it, reflects a radiance, and so these umberless bright particles conceal the stars; and if it were not or this atmosphere the sky would always display the stars against ts darkness. [Footnote: See No. 296, which also refers to starlight.] 912. Whether the stars have their light from the sun or in themselves. Some say that they shine of themselves, alledging that if Venus nd Mercury had not a light of their own, when they come between ur eye and the sun they would darken so much of the sun as they ould cover from our eye. But this is false, for it is proved that dark object against a luminous body is enveloped and entirely oncealed by the lateral rays of the rest of that luminous body nd so remains invisible. As may be seen when the sun is seen hrough the boughs of trees bare of their leaves, at some distance he branches do not conceal any portion of the sun from our eye. he same thing happens with the above mentioned planets which, hough they have no light of their own, do not-as has been said- onceal any part of the sun from our eye [18].

SECOND ARGUMENT.

Some say that the stars appear most brilliant at night in proportion as they are higher up; and that if they had no light of their own, the shadow of the earth which comes between them and the sun, would darken them, since they would not face nor be faced by the solar body. But those persons have not considered that the conical shadow of the earth cannot reach many of the stars; and even as to those it does reach, the cone is so much diminished that it covers very little of the star's ma.s.s, and all the rest is illuminated by the sun.

Footnote: From this and other remarks (see No. 902) it is clear hat Leonardo was familiar with the phenomena of Irradiation.]

13.

Why the planets appear larger in the East than they do overhead, whereas the contrary should be the case, as they are 3500 miles nearer to us when in mid sky than when on the horizon.

All the degrees of the elements, through which the images of the celestial bodies pa.s.s to reach the eye, are equal curves and the angles by which the central line of those images pa.s.ses through them, are unequal angles [Footnote 13: inequali, here and elsewhere does not mean unequal in the sense of not being equal to each other, but angles which are not right angles.]; and the distance is greater, as is shown by the excess of a b beyond a d; and the enlargement of these celestial bodies on the horizon is shown by the 9th of the 7th.

Observations on the stars.

914.

To see the real nature of the planets open the covering and note at the base [Footnote 4: basa. This probably alludes to some instrument, perhaps the Camera obscura.] one single planet, and the reflected movement of this base will show the nature of the said planet; but arrange that the base may face only one at the time.

On history of astronomy.

915.

Cicero says in [his book] De Divinatione that Astrology has been practised five hundred seventy thousand years before the Trojan war.

57000.

[Footnote: The statement that CICERO, De Divin. ascribes the discovery of astrology to a period 57000 years before the Trojan war I believe to be quite erroneous. According to ERNESTI, Clavis Ciceroniana, CH. G. SCHULZ (Lexic. Cicer.) and the edition of De Divin. by GIESE the word Astrologia occurs only twice in CICERO: De Divin. II, 42. Ad Chaldaeorum monstra veniamus, de quibus Eudoxus, Platonis auditor, in astrologia judicio doctissimorum hominum facile princeps, sic opinatur (id quod scriptum reliquit): Chaldaeis in praedictione et in notatione cujusque vitae ex natali die minime esse credendum." He then quotes the condemnatory verdict of other philosophers as to the teaching of the Chaldaeans but says nothing as to the antiquity and origin of astronomy. CICERO further notes De oratore I, 16 that Aratus was "ignarus astrologiae" but that is all. So far as I know the word occurs nowhere else in CICERO; and the word Astronomia he does not seem to have used at all. (H. MULLER-STRUBING.)]

Of time and its divisions (916-918).

916.

Although time is included in the cla.s.s of Continuous Quant.i.ties, being indivisible and immaterial, it does not come entirely under the head of Geometry, which represents its divisions by means of figures and bodies of infinite variety, such as are seen to be continuous in their visible and material properties. But only with its first principles does it agree, that is with the Point and the Line; the point may be compared to an instant of time, and the line may be likened to the length of a certain quant.i.ty of time, and just as a line begins and terminates in a point, so such a s.p.a.ce of time. begins and terminates in an instant. And whereas a line is infinitely divisible, the divisibility of a s.p.a.ce of time is of the same nature; and as the divisions of the line may bear a certain proportion to each other, so may the divisions of time.

[Footnote: This pa.s.sage is repeated word for word on page 190b of the same ma.n.u.script and this is accounted for by the text in Vol. I, No. 4. Compare also No. 1216.]

917.

Describe the nature of Time as distinguished from the Geometrical definitions.

918.

Divide an hour into 3000 parts, and this you can do with a clock by making the pendulum lighter or heavier.

_XVI.

Physical Geography.

Leonardo's researches as to the structure of the earth and sea were made at a time, when the extended voyages of the Spaniards and Portuguese had also excited a special interest in geographical questions in Italy, and particularly in Tuscany. Still, it need scarcely surprise us to find that in deeper questions, as to the structure of the globe, the primitive state of the earth's surface, and the like, he was far in advance of his time.