The Elements of Geology - Part 3
Library

Part 3

We are now to consider a few of the forms into which rock ma.s.ses are carved by the weather.

BOWLDERS OF WEATHERING. In many quarries and outcrops we may see that the blocks into which one or more of the uppermost layers have been broken along their joints and bedding planes are no longer angular, as are those of the layers below. The edges and corners of these blocks have been worn away by the weather. Such rounded cores, known as bowlders of weathering, are often left to strew the surface.

DIFFERENTIAL WEATHERING. This term covers all cases in which a rock ma.s.s weathers differently in different portions. Any weaker spots or layers are etched out on the surface, leaving the more resistant in relief. Thus ma.s.sive limestones become pitted where the weather drills out the weaker portions. In these pits, when once they are formed, moisture gathers, a little soil collects, vegetation takes root, and thus they are further enlarged until the limestone may be deeply honeycombed.

On the sides of canyons, and elsewhere where the edges of strata are exposed, the harder layers project as cliffs, while the softer weather back to slopes covered with the talus of the harder layers above them. It is convenient to call the former cliff makers and the latter slope makers.

Differential weathering plays a large part in the sculpture of the land. Areas of weak rock are wasted to plains, while areas of hard rock adjacent are still left as hills and mountain ridges, as in the valleys and mountains of eastern Pennsylvania. But in such instances the lowering of the surface of the weaker rock is also due to the wear of streams, and especially to the removal by them from the land of the waste which covers and protects the rocks beneath.

Rocks owe their weakness to several different causes. Some, such as beds of loose sand, are soft and easily worn by rains; some, as limestone and gypsum for example, are soluble. Even hard insoluble rocks are weak under the attack of the weather when they are closely divided by joints and bedding planes and are thus readily broken up into blocks by mechanical agencies.

OUTLIERS AND MONUMENTS. As cliffs retreat under the attack of the weather, portions are left behind where the rock is more resistant or where the attack for any reason is less severe. Such remnant ma.s.ses, if large, are known as outliers. When

Note the rain furrows on the slope at the foot of the monuments.

In the foreground are seen fragments of petrified trunks of trees, composed of silica and extremely resistant to the weather. On the removal of the rock layers in which these fragments were imbedded they are left to strew the surface in the same way as are the residual flints of southern Missouri. flat-topped, because of the protection of a resistant horizontal capping layer, they are termed mesas,--a term applied also to the flat-topped portions of dissected plateaus (Fig. 129). Retreating cliffs may fall back a number of miles behind their outliers before the latter are finally consumed.

Monuments are smaller ma.s.ses and may be but partially detached from the cliff face. In the breaking down of sheets of horizontal strata, outliers grow smaller and smaller and are reduced to ma.s.sive rectangular monuments resembling castles (Fig. 17). The rock castle falls into ruin, leaving here and there an isolated tower; the tower crumbles to a lonely pillar, soon to be overthrown. The various and often picturesque shapes of monuments depend on the kind of rock, the att.i.tude of the strata, and the agent by which they are chiefly carved. Thus pillars may have a capital formed of a resistant stratum. Monuments may be undercut and come to rest on narrow pedestals, wherever they weather more rapidly near the ground, either because of the greater moisture there, or--in arid climates--because worn at their base by drifting sands.

Stony clays disintegrating under the rain often contain bowlders which protect the softer material beneath from the vertical blows of raindrops, and thus come to stand on pedestals of some height.

One may sometimes see on the ground beneath dripping eaves pebbles left in the same way, protecting tiny pedestals of sand.

MOUNTAIN PEAKS AND RIDGES. Most mountains have been carved out of great broadly uplifted folds and blocks of the earth's crust.

Running water and glacier ice have cut these folds and blocks into ma.s.ses divided by deep valleys; but it is by the weather, for the most part, that the ma.s.ses thus separated have been sculptured to the present forms of the individual peaks and ridges.

Frost and heat and cold sculpture high mountains to sharp, tusklike peaks and ragged, serrate crests, where their waste is readily removed.

The Matterhorn of the Alps is a famous example of a mountain peak whose carving by the frost and other agents is in active progress.

On its face "scarcely a rock anywhere is firmly attached," and the fall of loosened stones is incessant. Mountain climbers who have camped at its base tell how huge rocks from time to time come leaping down its precipices, followed by trains of dislodged smaller fragments and rock dust; and how at night one may trace the course of the bowlders by the sparks which they strike from the mountain walls. Mount a.s.siniboine, Canada (Fig. 20), resembles the Matterhorn in form and has been carved by the same agencies.

"The Needles" of Arizona are examples of sharp mountain peaks in a warm arid region sculptured chiefly by temperature changes.

Chemical decay, especially when carried on beneath a cover of waste and vegetation, favors the production of rounded k.n.o.bs and dome-shaped mountains.

THE WEATHER CURVE. We have seen that weathering reduces the angular block quarried by the frost to a rounded bowlder by chipping off its corners and smoothing away its edges. In much the same way weathering at last reduces to rounded hills the earth blocks cut by streams or formed in any other way. High mountains may at first be sculptured by the weather to savage peaks (Fig.

181), but toward the end of their life history they wear down to rounded hills (Fig. 182). The weather curve, which may be seen on the summits of low hills (Fig. 21), is convex upward.

In Figure 22, representing a cubic block of stone whose faces are a yard square, how many square feet of surface are exposed to the weather by a cubic foot at a corner a; by one situated in the middle of an edge b; by one in the center of a side c? How much faster will a and b weather than c, and what will be the effect on the shape of the block?

THE COOPERATION OF VARIOUS AGENCIES IN ROCK SCULPTURE. For the sake of clearness it is necessary to describe the work of each geological agent separately. We must not forget, however, that in Nature no agent works independently and alone; that every result is the outcome of a long chain of causes. Thus, in order that the mountain peak may be carved by the agents of disintegration, the waste must be rapidly removed,--a work done by many agents, including some which we are yet to study; and in order that the waste may be removed as fast as formed, the region must first have been raised well above the level of the sea, so that the agents of transportation could do their work effectively. The sculpture of the rocks is accomplished only by the cooperation of many forces.

The constant removal of waste from the surface by creep and wash and carriage by streams is of the highest importance, because it allows the destruction of the land by means of weathering to go on as long as any land remains above sea level. If waste were not removed, it would grow to be so thick as to protect the rock beneath from further weathering, and the processes of destruction which we have studied would be brought to an end. The very presence of the mantle of waste over the land proves that on the whole rocks weather more rapidly than their waste is removed. The destruction of the land is going on as fast as the waste can be carried away.

We have now learned to see in the mantle of waste the record of the destructive action of the agencies of weathering on the rocks of the land surface. Similar records we shall find buried deeply among the rocks of the crust in old soils and in rocks pitted and decayed, telling of old land surfaces long wasted by the weather.

Ever since the dry land appeared these agencies have been as now quietly and unceasingly at work upon it, and have ever been the chief means of the destruction of its rocks. The vast bulk of the stratified rocks of the earth's crust is made up almost wholly of the waste thus worn from ancient lands.

In studying the various geological agencies we must remember the almost inconceivable times in which they work. The slowest process when multiplied by the immense time in which it is carried on produces great results. The geologist looks upon the land forms of the earth's surface as monuments which record the slow action of weathering and other agents during the ages of the past. The mountain peak, the rounded hill, the wide plain which lies where hills and mountains once stood, tell clearly of the great results which slow processes will reach when given long time in which to do their work. We should accustom ourselves also to think of the results which weathering will sooner or later bring to pa.s.s. The tombstone and the bowlder of the field, which each year lose from their surfaces a few crystalline grains, must in time be wholly destroyed. The hill whose rocks are slowly rotting underneath a cover of waste must become lower and lower as the centuries and millenniums come and go, and will finally disappear. Even the mountains are crumbling away continually, and therefore are but fleeting features of the landscape.

CHAPTER II

THE WORK OF GROUND WATER

LAND WATERS. We have seen how large is the part that water plays at and near the surface of the land in the processes of weathering and in the slow movement of waste down all slopes to the stream ways. We now take up the work of water as it descends beneath the ground,--a corrosive agent still, and carrying in solution as its load the invisible waste of rocks derived from their soluble parts.

Land waters have their immediate source in the rainfall. By the heat of the sun water is evaporated from the reservoir of the ocean and from moist surfaces everywhere. Mingled as vapor with the air, it is carried by the winds over sea and land, and condensed it returns to the earth as rain or snow. That part of the rainfall which descends on the ocean does not concern us, but that which falls on the land accomplishes, as it returns to the sea, the most important work of all surface geological agencies.

The rainfall may be divided into three parts: the first DRIES UP, being discharged into the air by evaporation either directly from the soil or through vegetation; the second RUNS OFF over the surface to flood the streams; the third SOAKS IN the ground and is henceforth known as GROUND or UNDERGROUND WATER.

THE DESCENT OF GROUND WATER. Seeping through the mantle of waste, ground water soaks into the pores and crevices of the underlying rock. All rocks of the upper crust of the earth are more or less porous, and all drink in water. IMPERVIOUS ROCKS, such as granite, clay, and shale, have pores so minute that the water which they take in is held fast within them by capillary attraction, and none drains through. PERVIOUS ROCKS, on the other hand, such as many sandstones, have pore s.p.a.ces so large that water filters through them more or less freely. Besides its seepage through the pores of pervious rocks, water pa.s.ses to lower levels through the joints and cracks by which all rocks, near the surface are broken.

Even the closest-grained granite has a pore s.p.a.ce of 1 in 400, while sandstone may have a pore s.p.a.ce of 1 in 4. Sand is so porous that it may absorb a third of its volume of water, and a loose loam even as much as one half.

THE GROUND-WATER SURFACE is the name given the upper surface of ground water, the level below which all rocks are saturated. In dry seasons the ground-water surface sinks. For ground water is constantly seeping downward under gravity, it is evaporated in the waste and its moisture is carried upward by capillarity and the roots of plants to the surface to be evaporated in the air. In wet seasons these constant losses are more than made good by fresh supplies from that part of the rainfall which soaks into the ground, and the ground-water surface rises.

In moist climates the ground-water surface (Fig. 24) lies, as a rule, within a few feet of the land surface and conforms to it in a general way, although with slopes of less inclination than those of the hills and valleys. In dry climates permanent ground water may be found only at depths of hundreds of feet. Ground water is held at its height by the fact that its circulation is constantly impeded by capillarity and friction. If it were as free to drain away as are surface streams, it would sink soon after a rain to the level of the deepest valleys of the region.

WELLS AND SPRINGS. Excavations made in permeable rocks below the ground-water surface fill to its level and are known as wells.

Where valleys cut this surface permanent streams are formed, the water either oozing forth along ill-defined areas or issuing at definite points called springs, where it is concentrated by the structure of the rocks. A level tract where the ground-water surface coincides with the surface of the ground is a swamp or marsh.

By studying a spring one may learn much of the ways and work of ground water. Spring water differs from that of the stream into which it flows in several respects. If we test the spring with a thermometer during successive months, we shall find that its temperature remains much the same the year round. In summer it is markedly cooler than the stream; in winter it is warmer and remains unfrozen while the latter perhaps is locked in ice. This means that its underground path must lie at such a distance from the surface that it is little affected by summer's heat and winter's cold.

While the stream is often turbid with surface waste washed into it by rains, the spring remains clear; its water has been filtered during its slow movement through many small underground pa.s.sages and the pores of rocks. Commonly the spring differs from the stream in that it carries a far larger load of dissolved rock.

Chemical a.n.a.lysis proves that streams contain various minerals in solution, but these are usually in quant.i.ties so small that they are not perceptible to the taste or feel. But the water of springs is often well charged with soluble minerals; in its slow, long journey underground it has searched out the soluble parts of the rocks through which it seeps and has dissolved as much of them as it could. When spring water is boiled away, the invisible load which it has carried is left behind, and in composition is found to be practically identical with that of the soluble ingredients of the country rock. Although to some extent the soluble waste of rocks is washed down surface slopes by the rain, by far the larger part is carried downward by ground water and is delivered to streams by springs.

In limestone regions springs are charged with calcium carbonate (the carbonate of lime), and where the limestone is magnesian they contain magnesium carbonate also. Such waters are "hard"; when used in washing, the minerals which they contain combine with the fatty acids of soap to form insoluble curdy compounds. When springs rise from rocks containing gypsum they are hard with calcium sulphate. In granite regions they contain more or less soda and potash from the decay of feldspar.

The flow of springs varies much less during the different seasons of the year than does that of surface streams. So slow is the movement of ground water through the rocks that even during long droughts large amounts remain stored above the levels of surface drainage.

MOVEMENTS OF GROUND WATER. Ground water is in constant movement toward its outlets. Its rate varies according to many conditions, but always is extremely slow. Even through loose sands beneath the beds of rivers it sometimes does not exceed a fifth of a mile a year.

In any region two zones of flow may be distinguished. The UPPER ZONE OF FLOW extends from the ground-water surface downward through the waste mantle and any permeable rocks on which the mantle rests, as far as the first impermeable layer, where the descending movement of the water is stopped. The DEEP ZONES OF FLOW occupy any pervious rocks which may be found below the impervious layer which lies nearest to the surface. The upper zone is a vast sheet of water saturating the soil and rocks and slowly seeping downward through their pores and interstices along the slopes to the valleys, where in part it discharges in springs and often unites also in a wide underflowing stream which supports and feeds the river (Fig. 24).

A city in a region of copious rains, built on the narrow flood plain of a river, overlooked by hills, depends for its water supply on driven wells, within the city limits, sunk in the sand a few yards from the edge of the stream. Are these wells fed by water from the river percolating through the sand, or by ground water on its way to the stream and possibly contaminated with the sewage of the town?

At what height does underground water stand in the wells of your region? Does it vary with the season? Have you ever known wells to go dry? It may be possible to get data from different wells and to draw a diagram showing the ground-water surface as compared with the surface of the ground.

FISSURE SPRINGS AND ARTESIAN WELLS. The DEEPER ZONES OF FLOW lie in pervious strata which are overlain by some impervious stratum.

Such layers are often carried by their dip to great depths, and water may circulate in them to far below the level of the surface streams and even of the sea. When a fissure crosses a water- bearing stratum, or AQUIFIER, water is forced upward by the pressure of the weight of the water contained in the higher parts of the stratum, and may reach the surface as a fissure spring. A boring which taps such an aquifer is known as an artesian well, a name derived from a province in France where wells of this kind have been long in use. The rise of the water in artesian wells, and in fissure springs also, depends on the following conditions ill.u.s.trated in Figure 29. The aquifer dips toward the region of the wells from higher ground, where it outcrops and receives its water. It is inclosed between an impervious layer above and water- tight or water-logged layers beneath. The weight of the column of water thus inclosed in the aquifer causes water to rise in the well, precisely as the weight of the water in a standpipe forces it in connected pipes to the upper stories of buildings.

Which will supply the larger region with artesian wells, an aquifer whose dip is steep or one whose dip is gentle? Which of the two aquifers, their thickness being equal, will have the larger outcrop and therefore be able to draw upon the larger amount of water from the rainfall? Ill.u.s.trate with diagrams.

THE ZONE OF SOLUTION. Near the surface, where the circulation of ground water is most active, it oxidizes, corrodes, and dissolves the rocks through which it pa.s.ses. It leaches soils and subsoils of their lime and other soluble minerals upon which plants depend for their food. It takes away the soluble cements of rocks; it widens fissures and joints and opens winding pa.s.sages along the bedding planes; it may even remove whole beds of soluble rocks, such as rock salt, limestone, or gypsum. The work of ground water in producing landslides has already been noticed. The zone in which the work of ground water is thus for the most part destructive we may call the zone of solution.

CAVES. In ma.s.sive limestone rocks, ground water dissolves channels which sometimes form large caves (Fig. 30). The necessary conditions for the excavation of caves of great size are well shown in central Kentucky, where an upland is built throughout of thick horizontal beds of limestone. The absence of layers of insoluble or impervious rock in its structure allows a free circulation of ground water within it by the way of all natural openings in the rock. These water ways have been gradually enlarged by solution and wear until the upland is honeycombed with caves. Five hundred open caverns are known in one county.