The Descent of Man and Selection in Relation to Sex - Volume I Part 7
Library

Volume I Part 7

M'Lennan, and others, that I need here give only the briefest summary of their results. The arguments recently advanced by the Duke of Argyll[250] and formerly by Archbishop Whately, in favour of the belief that man came into the world as a civilised being and that all savages have since undergone degradation, seem to me weak in comparison with those advanced on the other side. Many nations, no doubt, have fallen away in civilisation, and some may have lapsed into utter barbarism, though on this latter head I have not met with any evidence. The Fuegians were probably compelled by other conquering hordes to settle in their inhospitable country, and they may have become in consequence somewhat more degraded; but it would be difficult to prove that they have fallen much below the Botocudos who inhabit the finest parts of Brazil.

The evidence that all civilised nations are the descendants of barbarians, consists, on the one side, of clear traces of their former low condition in still-existing customs, beliefs, language, &c.; and on the other side, of proofs that savages are independently able to raise themselves a few steps in the scale of civilisation, and have actually thus risen. The evidence on the first head is extremely curious, but cannot be here given: I refer to such cases as that, for instance, of the art of enumeration, which, as Mr. Tylor clearly shews by the words still used in some places, originated in counting the fingers, first of one hand and then of the other, and lastly of the toes. We have traces of this in our own decimal system, and in the Roman numerals, which after reaching to the number V., change into VI., &c., when the other hand no doubt was used. So again, "when we speak of three-score and ten, we are counting by the vigesimal system, each score thus ideally made, standing for 20-for 'one man' as a Mexican or Carib would put it."[251]

According to a large and increasing school of philologists, every language bears the marks of its slow and gradual evolution. So it is with the art of writing, as letters are rudiments of pictorial representations. It is hardly possible to read Mr. M'Lennan's work[252]

and not admit that almost all civilised nations still retain some traces of such rude habits as the forcible capture of wives. What ancient nation, as the same author asks, can be named that was originally monogamous? The primitive idea of justice, as shewn by the law of battle and other customs of which traces still remain, was likewise most rude.

Many existing superst.i.tions are the remnants of former false religious beliefs. The highest form of religion-the grand idea of G.o.d hating sin and loving righteousness-was unknown during primeval times.

Turning to the other kind of evidence: Sir J. Lubbock has shewn that some savages have recently improved a little in some of their simpler arts. From the extremely curious account which he gives of the weapons, tools, and arts, used or practised by savages in various parts of the world, it cannot be doubted that these have nearly all been independent discoveries, excepting perhaps the art of making fire.[253] The Australian boomerang is a good instance of one such independent discovery. The Tahitians when first visited had advanced in many respects beyond the inhabitants of most of the other Polynesian islands.

There are no just grounds for the belief that the high culture of the native Peruvians and Mexicans was derived from any foreign source;[254]

many native plants were there cultivated, and a few native animals domesticated. We should bear in mind that a wandering crew from some semi-civilised land, if washed to the sh.o.r.es of America, would not, judging from the small influence of most missionaries, have produced any marked effect on the natives, unless they had already become somewhat advanced. Looking to a very remote period in the history of the world, we find, to use Sir J. Lubbock's well-known terms, a paleolithic and neolithic period; and no one will pretend that the art of grinding rough flint tools was a borrowed one. In all parts of Europe, as far east as Greece, in Palestine, India, j.a.pan, New Zealand, and Africa, including Egypt, flint tools have been discovered in abundance; and of their use the existing inhabitants retain no tradition. There is also indirect evidence of their former use by the Chinese and ancient Jews. Hence there can hardly be a doubt that the inhabitants of these many countries, which include nearly the whole civilised world, were once in a barbarous condition. To believe that man was aboriginally civilised and then suffered utter degradation in so many regions, is to take a pitiably low view of human nature. It is apparently a truer and more cheerful view that progress has been much more general than retrogression; that man has risen, though by slow and interrupted steps, from a lowly condition to the highest standard as yet attained by him in knowledge, morals, and religion.

CHAPTER VI.

ON THE AFFINITIES AND GENEALOGY OF MAN.

Position of man in the animal series-The natural system genealogical-Adaptive characters of slight value-Various small points of resemblance between man and the Quadrumana-Rank of man in the natural system-Birthplace and antiquity of man-Absence of fossil connecting-links-Lower stages in the genealogy of man, as inferred, firstly from his affinities and secondly from his structure-Early androgynous condition of the Vertebrata-Conclusion.

Even if it be granted that the difference between man and his nearest allies is as great in corporeal structure as some naturalists maintain, and although we must grant that the difference between them is immense in mental power, yet the facts given in the previous chapters declare, as it appears to me, in the plainest manner, that man is descended from some lower form, notwithstanding that connecting-links have not hitherto been discovered.

Man is liable to numerous, slight, and diversified variations, which are induced by the same general causes, are governed and transmitted in accordance with the same general laws, as in the lower animals. Man tends to multiply at so rapid a rate that his offspring are necessarily exposed to a struggle for existence, and consequently to natural selection. He has given rise to many races, some of which are so different that they have often been ranked by naturalists as distinct species. His body is constructed on the same h.o.m.ological plan as that of other mammals, independently of the uses to which the several parts may be put. He pa.s.ses through the same phases of embryological development.

He retains many rudimentary and useless structures, which no doubt were once serviceable. Characters occasionally make their reappearance in him, which we have every reason to believe were possessed by his early progenitors. If the origin of man had been wholly different from that of all other animals, these various appearances would be mere empty deceptions; but such an admission is incredible. These appearances, on the other hand, are intelligible, at least to a large extent, if man is the co-descendant with other mammals of some unknown and lower form.

Some naturalists, from being deeply impressed with the mental and spiritual powers of man, have divided the whole organic world into three kingdoms, the Human, the Animal, and the Vegetable, thus giving to man a separate kingdom.[255] Spiritual powers cannot be compared or cla.s.sed by the naturalist; but he may endeavour to shew, as I have done, that the mental faculties of man and the lower animals do not differ in kind, although immensely in degree. A difference in degree, however great, does not justify us in placing man in a distinct kingdom, as will perhaps be best ill.u.s.trated by comparing the mental powers of two insects, namely, a coccus or scale-insect and an ant, which undoubtedly belong to the same cla.s.s. The difference is here greater, though of a somewhat different kind, than that between man and the highest mammal.

The female coccus, whilst young, attaches itself by its proboscis to a plant; sucks the sap but never moves again; is fertilised and lays eggs; and this is its whole history. On the other hand, to describe the habits and mental powers of a female ant, would require, as Pierre Huber has shewn, a large volume; I may, however, briefly specify a few points.

Ants communicate information to each other, and several unite for the same work, or games of play. They recognise their fellow-ants after months of absence. They build great edifices, keep them clean, close the doors in the evening, and post sentries. They make roads, and even tunnels under rivers. They collect food for the community, and when an object, too large for entrance, is brought to the nest, they enlarge the door, and afterwards build it up again.[256] They go out to battle in regular bands, and freely sacrifice their lives for the common weal.

They emigrate in accordance with a preconcerted plan. They capture slaves. They keep Aphides as milch-cows. They move the eggs of their aphides, as well as their own eggs and coc.o.o.ns, into warm parts of the nest, in order that they may be quickly hatched; and endless similar facts could be given. On the whole, the difference in mental power between an ant and a coccus is immense; yet no one has ever dreamed of placing them in distinct cla.s.ses, much less in distinct kingdoms. No doubt this interval is bridged over by the intermediate mental powers of many other insects; and this is not the case with man and the higher apes. But we have every reason to believe that breaks in the series are simply the result of many forms having become extinct.

Professor Owen, relying chiefly on the structure of the brain, has divided the mammalian series into four sub-cla.s.ses. One of these he devotes to man; in another he places both the marsupials and the monotremata; so that he makes man as distinct from all other mammals as are these two latter groups conjoined. This view has not been accepted, as far as I am aware, by any naturalist capable of forming an independent judgment, and therefore need not here be further considered.

We can understand why a cla.s.sification founded on any single character or organ-even an organ so wonderfully complex and important as the brain-or on the high development of the mental faculties, is almost sure to prove unsatisfactory. This principle has indeed been tried with hymenopterous insects; but when thus cla.s.sed by their habits or instincts, the arrangement proved thoroughly artificial.[257]

Cla.s.sifications may, of course, be based on any character whatever, as on size, colour, or the element inhabited; but naturalists have long felt a profound conviction that there is a natural system. This system, it is now generally admitted, must be, as far as possible, genealogical in arrangement,-that is, the co-descendants of the same form must be kept together in one group, separate from the co-descendants of any other form; but if the parent-forms are related, so will be their descendants, and the two groups together will form a larger group. The amount of difference between the several groups-that is the amount of modification which each has undergone-will be expressed by such terms as genera, families, orders, and cla.s.ses. As we have no record of the lines of descent, these lines can be discovered only by observing the degrees of resemblance between the beings which are to be cla.s.sed. For this object numerous points of resemblance are of much more importance than the amount of similarity or dissimilarity in a few points. If two languages were found to resemble each other in a mult.i.tude of words and points of construction, they would be universally recognised as having sprung from a common source, notwithstanding that they differed greatly in some few words or points of construction. But with organic beings the points of resemblance must not consist of adaptations to similar habits of life: two animals may, for instance, have had their whole frames modified for living in the water, and yet they will not be brought any nearer to each other in the natural system. Hence we can see how it is that resemblances in unimportant structures, in useless and rudimentary organs, and in parts not as yet fully developed or functionally active, are by far the most serviceable for cla.s.sification; for they can hardly be due to adaptations within a late period; and thus they reveal the old lines of descent or of true affinity.

We can further see why a great amount of modification in some one character ought not to lead us to separate widely any two organisms. A part which already differs much from the same part in other allied forms has already, according to the theory of evolution, varied much; consequently it would (as long as the organism remained exposed to the same exciting conditions) be liable to further variations of the same kind; and these, if beneficial, would be preserved, and thus continually augmented. In many cases the continued development of a part, for instance, of the beak of a bird, or of the teeth of a mammal, would not be advantageous to the species for gaining its food, or for any other object; but with man we can see no definite limit, as far as advantage is concerned, to the continued development of the brain and mental faculties. Therefore in determining the position of man in the natural or genealogical system, the extreme development of his brain ought not to outweigh a mult.i.tude of resemblances in other less important or quite unimportant points.

The greater number of naturalists who have taken into consideration the whole structure of man, including his mental faculties, have followed Blumenbach and Cuvier, and have placed man in a separate Order, under the t.i.tle of the Bimana, and therefore on an equality with the Orders of the Quadrumana, Carnivora, &c. Recently many of our best naturalists have recurred to the view first propounded by Linnaeus, so remarkable for his sagacity, and have placed man in the same Order with the Quadrumana, under the t.i.tle of the Primates. The justice of this conclusion will be admitted if, in the first place, we bear in mind the remarks just made on the comparatively small importance for cla.s.sification of the great development of the brain in man; bearing, also, in mind that the strongly-marked differences between the skulls of man and the Quadrumana (lately insisted upon by Bischoff, Aeby, and others) apparently follow from their differently developed brains. In the second place, we must remember that nearly all the other and more important differences between man and the Quadrumana are manifestly adaptive in their nature, and relate chiefly to the erect position of man; such as the structure of his hand, foot, and pelvis, the curvature of his spine, and the position of his head. The family of seals offers a good ill.u.s.tration of the small importance of adaptive characters for cla.s.sification. These animals differ from all other Carnivora in the form of their bodies and in the structure of their limbs, far more than does man from the higher apes; yet in every system, from that of Cuvier to the most recent one by Mr. Flower,[258] seals are ranked as a mere family in the Order of the Carnivora. If man had not been his own cla.s.sifier, he would never have thought of founding a separate order for his own reception.

It would be beyond my limits, and quite beyond my knowledge, even to name the innumerable points of structure in which man agrees with the other Primates. Our great anatomist and philosopher, Prof. Huxley, has fully discussed this subject,[259] and has come to the conclusion that man in all parts of his organisation differs less from the higher apes, than these do from the lower members of the same group. Consequently there "is no justification for placing man in a distinct order."

In an early part of this volume I brought forward various facts, shewing how closely man agrees in const.i.tution with the higher mammals; and this agreement, no doubt, depends on our close similarity in minute structure and chemical composition. I gave, as instances, our liability to the same diseases, and to the attacks of allied parasites; our tastes in common for the same stimulants, and the similar effects thus produced, as well as by various drugs; and other such facts.

As small unimportant points of resemblance between man and the higher apes are not commonly noticed in systematic works, and as, when numerous, they clearly reveal our relationship, I will specify a few such points. The relative position of the features are manifestly the same in man and the Quadrumana; and the various emotions are displayed by nearly similar movements of the muscles and skin, chiefly above the eyebrows and round the mouth. Some few expressions are, indeed, almost the same, as in the weeping of certain kinds of monkeys, and in the laughing noise made by others, during which the corners of the mouth are drawn backwards, and the lower eyelids wrinkled. The external ears are curiously alike. In man the nose is much more prominent than in most monkeys; but we may trace the commencement of an aquiline curvature in the nose of the Hoolock Gibbon; and this in the _Semnopithecus nasica_ is carried to a ridiculous extreme.

The faces of many monkeys are ornamented with beards, whiskers, or moustaches. The hair on the head grows to a great length in some species of Semnopithecus;[260] and in the Bonnet monkey (_Macacus radiatus_) it radiates from a point on the crown, with a parting down the middle, as in man. It is commonly said that the forehead gives to man his n.o.ble and intellectual appearance; but the thick hair on the head of the Bonnet monkey terminates abruptly downwards, and is succeeded by such short and fine hair, or down, that at a little distance the forehead, with the exception of the eyebrows, appears quite naked. It has been erroneously a.s.serted that eyebrows are not present in any monkey. In the species just named the degree of nakedness of the forehead differs in different individuals; and Eschricht states[261] that in our children the limit between the hairy scalp and the naked forehead is sometimes not well defined; so that here we seem to have a trifling case of reversion to a progenitor, in whom the forehead had not as yet become quite naked.

It is well known that the hair on our arms tends to converge from above and below to a point at the elbow. This curious arrangement, so unlike that in most of the lower mammals, is common to the gorilla, chimpanzee, orang, some species of Hylobates, and even to some few American monkeys.

But in _Hylobates agilis_ the hair on the fore-arm is directed downwards or towards the wrist in the ordinary manner; and in _H. lar_ it is nearly erect, with only a very slight forward inclination; so that in this latter species it is in a transitional state. It can hardly be doubted that with most mammals the thickness of the hair and its direction on the back is adapted to throw off the rain; even the transverse hairs on the fore-legs of a dog may serve for this end when he is coiled up asleep. Mr. Wallace remarks that the convergence of the hair towards the elbow on the arms of the orang (whose habits he has so carefully studied) serves to throw off the rain, when, as is the custom of this animal, the arms are bent, with the hands clasped round a branch or over its own head. We should, however, bear in mind that the att.i.tude of an animal may perhaps be in part determined by the direction of the hair; and not the direction of the hair by the att.i.tude. If the above explanation is correct in the case of the orang, the hair on our fore-arms offers a curious record of our former state; for no one supposes that it is now of any use in throwing off the rain, nor in our present erect condition is it properly directed for this purpose.

It would, however, be rash to trust too much to the principle of adaptation in regard to the direction of the hair in man or his early progenitors; for it is impossible to study the figures given by Eschricht of the arrangement of the hair on the human ftus (this being the same as in the adult) and not agree with this excellent observer that other and more complex causes have intervened. The points of convergence seem to stand in some relation to those points in the embryo which are last closed in during development. There appears, also, to exist some relation between the arrangement of the hair on the limbs, and the course of the medullary arteries.[262]

It must not be supposed that the resemblances between man and certain apes in the above and many other points-such as in having a naked forehead, long tresses on the head, &c.-are all necessarily the result of unbroken inheritance from a common progenitor thus characterised, or of subsequent reversion. Many of these resemblances are more probably due to a.n.a.logous variation, which follows, as I have elsewhere attempted to shew,[263] from co-descended organisms having a similar const.i.tution and having been acted on by similar causes inducing variability. With respect to the similar direction of the hair on the fore-arms of man and certain monkeys, as this character is common to almost all the anthropomorphous apes, it may probably be attributed to inheritance; but not certainly so, as some very distinct American monkeys are thus characterised. The same remark is applicable to the tailless condition of man; for the tail is absent in all the anthropomorphous apes.

Nevertheless this character cannot with certainty be attributed to inheritance, as the tail, though not absent, is rudimentary in several other Old World and in some New World species, and is quite absent in several species belonging to the allied group of Lemurs.

Although, as we have now seen, man has no just right to form a separate Order for his own reception, he may perhaps claim a distinct Sub-order or Family. Prof. Huxley, in his last work,[264] divides the Primates into three Sub-orders; namely, the Anthropidae with man alone, the Simiadae including monkeys of all kinds, and the Lemuridae with the diversified genera of lemurs. As far as differences in certain important points of structure are concerned, man may no doubt rightly claim the rank of a Sub-order; and this rank is too low, if we look chiefly to his mental faculties. Nevertheless, under a genealogical point of view it appears that this rank is too high, and that man ought to form merely a Family, or possibly even only a Sub-family. If we imagine three lines of descent proceeding from a common source, it is quite conceivable that two of them might after the lapse of ages be so slightly changed as still to remain as species of the same genus; whilst the third line might become so greatly modified as to deserve to rank as a distinct Sub-family, Family, or even Order. But in this case it is almost certain that the third line would still retain through inheritance numerous small points of resemblance with the other two lines. Here then would occur the difficulty, at present insoluble, how much weight we ought to a.s.sign in our cla.s.sifications to strongly-marked differences in some few points,-that is to the amount of modification undergone; and how much to close resemblance in numerous unimportant points, as indicating the lines of descent or genealogy. The former alternative is the most obvious, and perhaps the safest, though the latter appears the most correct as giving a truly natural cla.s.sification.

To form a judgment on this head, with reference to man we must glance at the cla.s.sification of the Simiadae. This family is divided by almost all naturalists into the Catarhine group, or Old World monkeys, all of which are characterised (as their name expresses) by the peculiar structure of their nostrils and by having four premolars in each jaw; and into the Platyrhine group or New World monkeys (including two very distinct sub-groups), all of which are characterised by differently-constructed nostrils and by having six premolars in each jaw. Some other small differences might be mentioned. Now man unquestionably belongs in his dent.i.tion, in the structure of his nostrils, and some other respects, to the Catarhine or Old World division; nor does he resemble the Platyrhines more closely than the Catarhines in any characters, excepting in a few of not much importance and apparently of an adaptive nature. Therefore it would be against all probability to suppose that some ancient New World species had varied, and had thus produced a man-like creature with all the distinctive characters proper to the Old World division; losing at the same time all its own distinctive characters. There can consequently hardly be a doubt that man is an offshoot from the Old World Simian stem; and that under a genealogical point of view, he must be cla.s.sed with the Catarhine division.[265]

The anthropomorphous apes, namely the gorilla, chimpanzee, orang, and hylobates, are separated as a distinct sub-group from the other Old World monkeys by most naturalists. I am aware that Gratiolet, relying on the structure of the brain, does not admit the existence of this sub-group, and no doubt it is a broken one; thus the orang, as Mr. St.

G. Mivart remarks,[266] "is one of the most peculiar and aberrant forms to be found in the Order." The remaining, non-anthropomorphous, Old World monkeys, are again divided by some naturalists into two or three smaller sub-groups; the genus Semnopithecus, with its peculiar sacculated stomach, being the type of one such sub-group. But it appears from M. Gaudry's wonderful discoveries in Attica, that during the Miocene period a form existed there, which connected Semnopithecus and Macacus; and this probably ill.u.s.trates the manner in which the other and higher groups were once blended together.

If the anthropomorphous apes be admitted to form a natural sub-group, then as man agrees with them, not only in all those characters which he possesses in common with the whole Catarhine group, but in other peculiar characters, such as the absence of a tail and of callosities and in general appearance, we may infer that some ancient member of the anthropomorphous sub-group gave birth to man. It is not probable that a member of one of the other lower sub-groups should, through the law of a.n.a.logous variation, have given rise to a man-like creature, resembling the higher anthropomorphous apes in so many respects. No doubt man, in comparison with most of his allies, has undergone an extraordinary amount of modification, chiefly in consequence of his greatly developed brain and erect position; nevertheless we should bear in mind that he "is but one of several exceptional forms of Primates."[267]

Every naturalist, who believes in the principle of evolution, will grant that the two main divisions of the Simiadae, namely the Catarhine and Platyrhine monkeys, with their sub-groups, have all proceeded from some one extremely ancient progenitor. The early descendants of this progenitor, before they had diverged to any considerable extent from each other, would still have formed a single natural group; but some of the species or incipient genera would have already begun to indicate by their diverging characters the future distinctive marks of the Catarhine and Platyrhine divisions. Hence the members of this supposed ancient group would not have been so uniform in their dent.i.tion or in the structure of their nostrils, as are the existing Catarhine monkeys in one way and the Platyrhines in another way, but would have resembled in this respect the allied Lemuridae which differ greatly from each other in the form of their muzzles,[268] and to an extraordinary degree in their dent.i.tion.

The Catarhine and Platyrhine monkeys agree in a mult.i.tude of characters, as is shewn by their unquestionably belonging to one and the same Order.

The many characters which they possess in common can hardly have been independently acquired by so many distinct species; so that these characters must have been inherited. But an ancient form which possessed many characters common to the Catarhine and Platyrhine monkeys, and others in an intermediate condition, and some few perhaps distinct from those now present in either group, would undoubtedly have been ranked, if seen by a naturalist, as an ape or monkey. And as man under a genealogical point of view belongs to the Catarhine or Old World stock, we must conclude, however much the conclusion may revolt our pride, that our early progenitors would have been properly thus designated.[269] But we must not fall into the error of supposing that the early progenitor of the whole Simian stock, including man, was identical with, or even closely resembled, any existing ape or monkey.

_On the Birthplace and Antiquity of Man._-We are naturally led to enquire where was the birthplace of man at that stage of descent when our progenitors diverged from the Catarhine stock. The fact that they belonged to this stock clearly shews that they inhabited the Old World; but not Australia nor any oceanic island, as we may infer from the laws of geographical distribution. In each great region of the world the living mammals are closely related to the extinct species of the same region. It is therefore probable that Africa was formerly inhabited by extinct apes closely allied to the gorilla and chimpanzee; and as these two species are now man's nearest allies, it is somewhat more probable that our early progenitors lived on the African continent than elsewhere. But it is useless to speculate on this subject, for an ape nearly as large as a man, namely the Dryopithecus of Lartet, which was closely allied to the anthropomorphous Hylobates, existed in Europe during the Upper Miocene period; and since so remote a period the earth has certainly undergone many great revolutions, and there has been ample time for migration on the largest scale.

At the period and place, whenever and wherever it may have been, when man first lost his hairy covering, he probably inhabited a hot country; and this would have been favourable for a frugiferous diet, on which, judging from a.n.a.logy, he subsisted. We are far from knowing how long ago it was when man first diverged from the Catarhine stock; but this may have occurred at an epoch as remote as the Eocene period; for the higher apes had diverged from the lower apes as early as the Upper Miocene period, as shewn by the existence of the Dryopithecus. We are also quite ignorant at how rapid a rate organisms, whether high or low in the scale, may under favourable circ.u.mstances be modified: we know, however, that some have retained the same form during an enormous lapse of time.

From what we see going on under domestication, we learn that within the same period some of the co-descendants of the same species may be not at all changed, some a little, and some greatly changed. Thus it may have been with man, who has undergone a great amount of modification in certain characters in comparison with the higher apes.

The great break in the organic chain between man and his nearest allies, which cannot be bridged over by any extinct or living species, has often been advanced as a grave objection to the belief that man is descended from some lower form; but this objection will not appear of much weight to those who, convinced by general reasons, believe in the general principle of evolution. Breaks incessantly occur in all parts of the series, some being wide, sharp and defined, others less so in various degrees; as between the orang and its nearest allies-between the Tarsius and the other Lemuridae-between the elephant and in a more striking manner between the Ornithorhynchus or Echidna, and other mammals. But all these breaks depend merely on the number of related forms which have become extinct. At some future period, not very distant as measured by centuries, the civilised races of man will almost certainly exterminate and replace throughout the world the savage races.

At the same time the anthropomorphous apes, as Professor Schaaffhausen has remarked,[270] will no doubt be exterminated. The break will then be rendered wider, for it will intervene between man in a more civilised state, as we may hope, than the Caucasian, and some ape as low as a baboon, instead of as at present between the negro or Australian and the gorilla.

With respect to the absence of fossil remains, serving to connect man with his ape-like progenitors, no one will lay much stress on this fact, who will read Sir C. Lyell's discussion,[271] in which he shews that in all the vertebrate cla.s.ses the discovery of fossil remains has been an extremely slow and fortuitous process. Nor should it be forgotten that those regions which are the most likely to afford remains connecting man with some extinct ape-like creature, have not as yet been searched by geologists.

_Lower Stages in the Genealogy of Man._-We have seen that man appears to have diverged from the Catarhine or Old World division of the Simiadae, after these had diverged from the New World division. We will now endeavour to follow the more remote traces of his genealogy, trusting in the first place to the mutual affinities between the various cla.s.ses and orders, with some slight aid from the periods, as far as ascertained, of their successive appearance on the earth. The Lemuridae stand below and close to the Simiadae, const.i.tuting a very distinct family of the Primates, or, according to Hackel, a distinct Order. This group is diversified and broken to an extraordinary degree, and includes many aberrant forms. It has, therefore, probably suffered much extinction. Most of the remnants survive on islands, namely in Madagascar and in the islands of the Malayan archipelago, where they have not been exposed to such severe compet.i.tion as they would have been on well-stocked continents. This group likewise presents many gradations, leading, as Huxley remarks,[272] "insensibly from the crown and summit of the animal creation down to creatures from which there is but a step, as it seems, to the lowest, smallest, and least intelligent of the placental mammalia." From these various considerations it is probable that the Simiadae were originally developed from the progenitors of the existing Lemuridae; and these in their turn from forms standing very low in the mammalian series.

The Marsupials stand in many important characters below the placental mammals. They appeared at an earlier geological period, and their range was formerly much more extensive than what it now is. Hence the Placentata are generally supposed to have been derived from the Implacentata or Marsupials; not, however, from forms closely like the existing Marsupials, but from their early progenitors. The Monotremata are plainly allied to the Marsupials; forming a third and still lower division in the great mammalian series. They are represented at the present day solely by the Ornithorhynchus and Echidna; and these two forms may be safely considered as relics of a much larger group which have been preserved in Australia through some favourable concurrence of circ.u.mstances. The Monotremata are eminently interesting, as in several important points of structure they lead towards the cla.s.s of reptiles.

In attempting to trace the genealogy of the Mammalia, and therefore of man, lower down in the series, we become involved in greater and greater obscurity. He who wishes to see what ingenuity and knowledge can effect, may consult Prof. Hackel's works.[273] I will content myself with a few general remarks. Every evolutionist will admit that the five great vertebrate cla.s.ses, namely, mammals, birds, reptiles, amphibians, and fishes, are all descended from some one prototype; for they have much in common, especially during their embryonic state. As the cla.s.s of fishes is the most lowly organised and appeared before the others, we may conclude that all the members of the vertebrate kingdom are derived from some fish-like animal, less highly organised than any as yet found in the lowest known formations. The belief that animals so distinct as a monkey or elephant and a humming-bird, a snake, frog, and fish, &c., could all have sprung from the same parents, will appear monstrous to those who have not attended to the recent progress of natural history.

For this belief implies the former existence of links closely binding together all these forms, now so utterly unlike.

Nevertheless it is certain that groups of animals have existed, or do now exist, which serve to connect more or less closely the several great vertebrate cla.s.ses. We have seen that the Ornithorhynchus graduates towards reptiles; and Prof. Huxley has made the remarkable discovery, confirmed by Mr. Cope and others, that the old Dinosaurians are intermediate in many important respects between certain reptiles and certain birds-the latter consisting of the ostrich-tribe (itself evidently a widely-diffused remnant of a larger group) and of the Archeopteryx, that strange Secondary bird having a long tail like that of the lizard. Again, according to Prof. Owen,[274] the Ichthyosaurians-great sea-lizards furnished with paddles-present many affinities with fishes, or rather, according to Huxley, with amphibians.

This latter cla.s.s (including in its highest division frogs and toads) is plainly allied to the Ganoid fishes. These latter fishes swarmed during the earlier geological periods, and were constructed on what is called a highly generalised type, that is they presented diversified affinities with other groups of organisms. The amphibians and fishes are also so closely united by the Lepidosiren, that naturalists long disputed in which of these two cla.s.ses it ought to be placed. The Lepidosiren and some few Ganoid fishes have been preserved from utter extinction by inhabiting our rivers, which are harbours of refuge, bearing the same relation to the great waters of the ocean that islands bear to continents.

Lastly, one single member of the immense and diversified cla.s.s of fishes, namely the lancelet or amphioxus, is so different from all other fishes, that Hackel maintains that it ought to form a distinct cla.s.s in the vertebrate kingdom. This fish is remarkable for its negative characters; it can hardly be said to possess a brain, vertebral column, or heart, &c.; so that it was cla.s.sed by the older naturalists amongst the worms. Many years ago Prof. Goodsir perceived that the lancelet presented some affinities with the Ascidians, which are invertebrate, hermaphrodite, marine creatures permanently attached to a support. They hardly appear like animals, and consist of a simple, tough, leathery sack, with two small projecting orifices. They belong to the Molluscoida of Huxley-a lower division of the great kingdom of the Mollusca; but they have recently been placed by some naturalists amongst the Vermes or worms. Their larvae somewhat resemble tadpoles in shape,[275] and have the power of swimming freely about. Some observations lately made by M.

Kowalevsky,[276] since confirmed by Prof. Kuppfer, will form a discovery of extraordinary interest, if still further extended, as I hear from M.

Kowalevsky in Naples he has now effected. The discovery is that the larvae of Ascidians are related to the Vertebrata, in their manner of development, in the relative position of the nervous system, and in possessing a structure closely like the _chorda dorsalis_ of vertebrate animals. It thus appears, if we may rely on embryology, which has always proved the safest guide in cla.s.sification, that we have at last gained a clue to the source whence the Vertebrata have been derived. We should thus be justified in believing that at an extremely remote period a group of animals existed, resembling in many respects the larvae of our present Ascidians, which diverged into two great branches-the one retrograding in development and producing the present cla.s.s of Ascidians, the other rising to the crown and summit of the animal kingdom by giving birth to the Vertebrata.

We have thus far endeavoured rudely to trace the genealogy of the Vertebrata by the aid of their mutual affinities. We will now look to man as he exists; and we shall, I think, be able partially to restore during successive periods, but not in due order of time, the structure of our early progenitors. This can be effected by means of the rudiments which man still retains, by the characters which occasionally make their appearance in him through reversion, and by the aid of the principles of morphology and embryology. The various facts, to which I shall here allude, have been given in the previous chapters. The early progenitors of man were no doubt once covered with hair, both s.e.xes having beards; their ears were pointed and capable of movement; and their bodies were provided with a tail, having the proper muscles. Their limbs and bodies were also acted on by many muscles which now only occasionally reappear, but are normally present in the Quadrumana. The great artery and nerve of the humerus ran through a supra-condyloid foramen. At this or some earlier period, the intestine gave forth a much larger diverticulum or caec.u.m than that now existing. The foot, judging from the condition of the great toe in the ftus, was then prehensile; and our progenitors, no doubt, were arboreal in their habits, frequenting some warm, forest-clad land. The males were provided with great canine teeth, which served them as formidable weapons.