The Commercial Products of the Vegetable Kingdom - Part 29
Library

Part 29

A cold and dry winter is followed with a greater yield of sugar from the maple than a season very moist and variable. Trees growing in wet places will yield more sap, but much less sugar from the same quant.i.ty, than trees on more elevated and drier ground. The red and white maple will yield sap, but it has much less of the saccharine quality than the rock or sugar maple.

The work begins usually about the first of March. The tree will yield its sap long before vegetation appears from the bud: frequently the most copious flow is before the snow disappears from the ground.

Some persons have a camp in their maple orchards, where large cauldrons are set in which to boil down the sap to the consistency of a thick syrup: others take the liquid to their houses, and there boil down and make the sugar.

The process begins by the preparation of spouts and troughs or tubs for the trees: the spouts or tubes are made of elder, sumach, or pine, sharpened to fit an auger hole of about three-fourths of an inch in diameter. The hole is bored a little upward, at the distance horizontally of five or six inches apart, and about twenty inches from the ground on the south or sunny side of the tree. The trough, cut from white maple, pine, ash, or ba.s.s wood, is set directly under the spouts, the points of which are so constructed as completely to fill the hole in the tree, and prevent the loss of the sap at the edges, having a small gimlet or pitch hole in the centre, through which the entire juice discharged from the tree runs, and is all saved in the vessels below. The distance bored into the tree is only about one-half an inch to give the best run of sap. The method of boring is far better for the preservation of the tree than boxing, or cutting a hole with an axe, from the lower edge of which the juice is directed by a spout to the trough or tub prepared to receive it. The tub should be of ash or other wood that will communicate no vicious taste to the liquid or sugar.

The sap is gathered daily from the trees and put in larger tubs for the purpose of boiling down. This is done by the process of a steady hot fire. The surface of the boiling kettle is from time to time cleansed by a skimmer. The liquid is prevented from boiling over by the suspension of a small piece of fat pork at the proper point. Fresh additions of sap are made as the volume boils away. When boiled down to a syrup, the liquor is set away in some earthen or metal vessel till it becomes cool and settled. Again the purest part is drawn off or poured into a kettle until the vessel is two-thirds full. By a brisk and continual fire, the syrup is further reduced in volume to a degree of consistence best taught by a little experience, when it is either put into moulds to become hard as it is cooled, or stirred until it shall be grained into sugar. The right point of time to take it away from the fire may be ascertained by cooling and graining a small quant.i.ty. The sediment is strained off and boiled down to make mola.s.ses.

The following is from a Ma.s.sachusetts paper:--

The maple produces the best sugar that we have from any plant.

Almost every one admires its taste. It usually sells in this market (Boston) nearly twice as high as other brown sugar. Had care been taken from the first settlement of the country to preserve the sugar maple, and proper attention been given to the cultivation of this tree, so valuable for fuel, timber, and ornament, besides the abundant yield of saccharine juice, we could now produce in New England sugar enough for our own consumption, and not be dependent on the labour of those who toil and suffer in a tropical sun for this luxury or necessary of life. But, for want of this friendly admonition,

"Axeman, spare that tree,"

the st.u.r.dy blows were dealt around without mercy or discretion; and the very generation that committed devastation in the first settlements in different sections of our country, generally lived to witness a scarcity of fuel; and means were resorted to for the purchase of sugar, that were far more expensive than would have been its manufacture, under a proper mode of economy in the preservation of the maple, and the production of sugar from its sap.

Those who have trees of the sugar maple, should prepare in season for making sugar. In many localities, wood is no object, and a rude method of boiling is followed; but where fuel is very scarce, a cheap apparatus should be prepared that will require but little fuel. In some sections, broad pans or kettles have been made of sheet-iron bottoms, and sides of plank or boards, care being taken (continued) to allow the fire to come into contact with the iron only. These pans cost but a trifle, and, owing to their large surface, the evaporation is rapid.

Another cheap construction for boiling with economy is, to make a tight box of plank, some four or five feet square--the width of a wide plank will answer, and then put into it, almost at the bottom, a piece of large copper funnel, say ten or twelve inches at the outer part, and then smaller. This funnel, beginning near one end, should run back nearly to the opposite side, then turn and come put at the opposite end, or at the side near the end, as most convenient, being in only two straight parts, that the soot may be cleared out. Each end should be made tight, with a f.l.a.n.g.e nailed to the box. At the mouth of the large part there should be a door, to reduce the draught; here make the fire, and at the other end have a funnel to carry off the smoke. In this case, there is only sheet copper between the fire and the sap which surrounds the funnel, so that the heat is readily taken up by the liquid, and very little escapes. This is an economical plan for cooking food for stock, steaming timber, &c.

For catching the sap, various kinds of vessels are used. The cheapest are made of white birch, which last one season, or less.

Troughs of pine, or linden or ba.s.s wood, may be made for a few cents each, and they will last for a number of years, if inverted in the shade of trees. But these are inconvenient; and, after the first year, they become dirty, and clog the sap. Pails with iron hoops are the best, and, eventually, the cheapest. By painting and carefully preserving them, they will cost, for a course of years, about one cent each for a year.

Mr. Alfred Fitch, in the "Genesee Farmer," says:--

In clarifying, I use for 50 lbs. of sugar one pint of skimmed milk, put into the syrup when cold, and place it over a moderate fire until it rises, which should occupy thirty or forty minutes; then skim and boil until it will grain; after which I put it into a tub, and turn on a little cold water, and in a few days the mola.s.ses will drain out, and leave the sugar dry, light, and white.

Mr. E.W. Clark, of Oswego, furnishes the following:--

_On Fining Maple Sugar_.--The sweet obtained from the maple tree is undoubtedly the purest known; but from mismanagement in the manufacture it frequently becomes very impure. Its value is lessened, while the expense of making it increases. I am sensible that the method which I shall recommend is not altogether a new one, and that it is more by attending to some apparently minute and trivial circ.u.mstances, than to any new plan, that my sugar is so good. Much has been written upon, and many useful improvements been made in, that part of the process which relates to tapping the trees, and gathering and evaporating the sap, &c.; but still, if the final operation is not understood, there will be a deficiency in the quality of the sugar. I shall confine myself to that part of the operation which relates to reducing the syrup to sugar, as it is of the first importance. My process is this:--When the syrup is reduced to the consistence of West India mola.s.ses, I set it away till it is perfectly cold, and then mix with it the clarifying matter, which is milk or eggs. I prefer eggs to milk, because when heated the whole of it curdles; whereas milk produces only a small portion of curd.

The eggs should be thoroughly beaten and effectually mixed with the syrup while cold. The syrup should then be heated till just before it would boil, when the curd rises, bringing with it every impurity, even the coloring matter, or a great portion of that which it had received from the smoke, kettles, buckets, or reservoirs. The boiling should be checked, and the sc.u.m carefully removed, when the syrup should be slowly turned into a thick woollen strainer, and left to run through at leisure. I would remark, that a great proportion of the sugar that is made in our country is not strained after cleansing. This is an error. If examined in a wine-gla.s.s, innumerable minute and almost imperceptible particles of curd will be seen floating in it, which, if not removed, render it liable to burn, and otherwise injure the taste and color of it.

A flannel strainer does this much better than a linen one. It is, indeed, _indispensable_. As to the quant.i.ty of eggs necessary, one pint to a pailful of syrup is amply sufficient, and half as much will do very well. I now put my syrup into another kettle, which has been made perfectly clean and _bright_, when it is placed over a quick but solid fire, and soon rises, but is kept from overflowing by being ladled with a long dipper. When it is sufficiently reduced, (I ascertain this by dropping it from the point of a knife, while hot, into one inch of cold water--if done, it will not immediately mix with the water, but lies at the bottom in a round flat drop,) it is taken from the fire, and the foaming allowed to subside. A thick white sc.u.m, which is useable, is removed, and the sugar turned into a cask, placed on an inclined platform, and left undisturbed for six weeks or longer, when it should be tapped in the bottom and the mola.s.ses drawn off. It will drain perfectly dry in a few days.

The sugar made in this manner is very nearly as white as lump sugar, and beautifully grained. We have always sold ours at the highest price of Muscovadoes; and even when these sugars have sold at eighteen cents, ours found a ready market at twenty. Two hands will sugar off 250 lbs. in a day. From the sc.u.m taken off in cleansing, I usually make, by diluting and recleansing, one-sixth as much as I had at first, and of an equal quality.

It is not of much consequence as regards the quality of the sugar, whether care be taken to keep the sap clean or not. The points in which the greatest error is committed, are, neglecting to use a flannel strainer, or to strain after cleansing--to have the sugar kettle properly cleaned--and to remove the white sc.u.m from the sugar.

An important process of manufacturing maple sugar, which produces a most beautiful article, is also thus described in a communication by the gentleman who gained the first premium at the State Fair at Rochester in 1843, to the Committee on Maple Sugar of the New York State Agricultural Society.

In the first place, I make my buckets, tubs, and kettles all perfectly clean. I boil the sap in a potash kettle, set in an arch in such a manner that the edge of the kettle is defended all around from the fire. I boil through the day, taking care not to have anything in the kettle that will give color to the sap, and to keep it well skimmed. At night I leave fire enough under the kettle to boil the sap nearly or quite to syrup by the next morning. I then take it out of the kettle, and strain it through a flannel cloth into a tub, if it is sweet enough; if not, I put it in a cauldron kettle, which I have hung on a pole in such a manner that I can swing it on or off the fire at pleasure, and boil it till it is sweet enough, and then strain it into the tub, and let it stand till the next morning. I then take it and the syrup in the kettle, and put it altogether into the cauldron, and sugar it off. I use, to clarify say 100 lbs. of sugar, the whites of five or six eggs well beaten, about one quart of new milk, and a spoonful of saleratus, all we'll mixed with the syrup before it is scalding hot. I then make a moderate fire directly under the cauldron, until the sc.u.m is all raised; then skim it off clean, taking care not to let it boil so as to rise in the kettle before I have done skimming it. I then sugar it off, leaving it so damp that it will drain a little. I let it remain in the kettle until it is well granulated. I then put it into boxes made smallest at the bottom, that will hold from fifty to seventy lbs., having a thin piece of board fitted in, two or three inches above the bottom, which is bored full of small holes, to let the mola.s.ses drain through, which I keep drawn off by a tap through the bottom. I put on the top of the sugar, in the box, a clean damp cloth; and over that, a board, well fitted in, so as to exclude the air from the sugar. After it has done draining, or nearly so, I dissolve it, and sugar it off again; going through with the same process in clarifying and draining as before.

The following remarks from Dr. Jackson, of Boston, may be of interest to the sections of the country where maple sugar is made:--

The northern parts of Maine, New Hampshire, Vermont, and New York, have dense forests of the sugar maple, and at present only very rude processes are made use of in preparing the sugar for market, so that it is too generally acid and deliquescent, besides being charged with salts of the oxide of iron, insomuch that it ordinarily strikes a black color with tea. To remedy these difficulties was the object of my researches; while, at the same time, I was engaged in ascertaining the true composition of the sap, with a view to the theory of vegetable nutrition.

I received several gallons of freshly-drawn maple sap from Northampton, Warner, and Canterbury, and made a.n.a.lyses of each lot, separating the acids, salts, and the sugar. I also a.n.a.lysed the sap of the yellow and white birch, which do not give any crystallisable sugar, but an astringent mola.s.ses.

I shall now communicate to you the process by which I manufactured sugar maple sap, received from the Shakers of Canterbury, who collected it with care in a clear gla.s.s demijohn, and sent it forthwith, so that it came to me without any change of composition, the weather being cold at the time. The evaporation was carried on in gla.s.s vessels until the sap was reduced to about one-eighth its original bulk, and then it was treated with a sufficient quant.i.ty of clear lime-water to render it neutral, and the evaporation was completed in a shallow porcelain basin. The result was, that a beautiful yellow granular sugar was obtained, from which not a single drop of mola.s.ses drained, and it did not deliquesce by exposure to the air. Another lot of the sap, reduced to sugar without lime-water, granulated, but not so well, was sour to the taste, deliquesced by exposure, and gave a considerable quant.i.ty of mola.s.ses.

Having studied the nature of the peculiar acid of the maple, I found that its combinations with lime were excessively soluble in alcohol, so that the yellow sugar first described could be rendered white in a few minutes, by placing it in an inverted cone open at the bottom, and pouring a fresh quant.i.ty of alcohol upon it, and allowing it to filtrate through the sugar. The whitened sugar was then taken and re-dissolved in boiling water and crystallised, by which all the alcoholic flavour was entirely removed, and a perfectly fine crystallised and pure sugar resulted. Now, in the large way, I advise the following method of manufacturing maple sugar. Obtain several large copper or bra.s.s kettles, and set them up in a row, either by tripods with iron rings, or by hanging them on a cross-bar; clean them well, then collect the sap in buckets, if possible, so that but little rain-water will be mixed with the sap, and take care not to have any dead leaves in it. For every gallon of the maple sap _add one measured ounce_ of clear lime-water, pa.s.s the sap into the first kettle and evaporate; then, when it is reduced to about one-half, dip it out into the second kettle, and skim it each time; then into the next, and so on, until it has reached the last, where it is reduced to syrup, and then may be thrown into a trough, and granulated by beating it up with an oar.

As soon as the first kettle is nearly empty, pour in a new lot of the sap, and so continue working it forward exactly after the manner of the West India sugar-boilers. The crude sugar may be refined subsequently, or at the time of casting it into the cones made of sheet iron, well painted with white lead and boiled linseed oil, and thoroughly dried, so that no paint can come off. These cones are to be stopped at first, until the sugar is cold; then remove the stopper and pour on the base of the cone a quant.i.ty of strong whiskey, or fourth proof rum. Allow this to nitrate through, until the sugar is white; dry the loaf, and redissolve it in boiling hot water, and evaporate it until it becomes dense enough to crystallise. Now pour it into the cones again, and let it harden. If any color remains, pour a saturated solution of refined white sugar on the base of the cone, and this syrup will remove all traces of color from the loaf.

One gallon of pasture maple sap yielded 3,451 grains of pure sugar.

One gallon of the juice of the sugar cane yields, on an average, in Jamaica, 7,000 grains of sugar. Hence, it will appear that maple sap is very nearly half as sweet as cane juice; and since the maple requires no outlay for its cultivation, and the process may be carried on when there is little else to be done, the manufacture of maple sugar is destined to become an important department of rural economy. It is well known, by the Report of the Statistics of the United States, that Vermont ranks next to Louisiana as a sugar state, producing (if I recollect correctly) 6,000,000 of pounds in some seasons, though the business is now carried on in a very rude way, without any apparatus, and with no great chemical skill; so that only a very impure kind of sugar is made, which, on account of its peculiar flavor, has not found its way into common use, for sweetening tea and coffee. It would appear worth while, then, to improve this manufacture, and to make the maple sugar equal to any now in use. This can be readily accomplished, if the farmers in the back country will study the process of sugar-making, for cane and maple sugar are, when pure, absolutely identical. It should be remarked, that forest maples do not produce so much sugar as those grown in open fields or in groves, where they have more light, the under-brush being cleared away.

In Farmington, on the Sandy River, in Maine, I have seen a very fine grove of maples, but thirty years old, which produced a large yield of very good sugar. A man and two boys made 1,500 lbs. of sugar from the sap of these trees in a single season. The sap was boiled down in potash kettles, which were scoured bright with vinegar and sand.

The sugar was of a fine yellow color, and well crystallised. It was drained of its mola.s.ses in casks, with a false bottom perforated with small holes--the cask having a hole bored at the bottom, with a tow plug placed loosely in it, to conduct off the mola.s.ses. This method is a good one, but the sap ought to be limed in boiling, as I have described; then it will not attach to the iron or copper boilers. The latter metal must not be used with acid syrup, for copper salts are poisonous.

There are several towns in the northern sections of Maine, New Hampshire, and Vermont, that produce more than sufficient sugar for the consumption of their inhabitants. A lot of good sugar trees will average four pounds to the tree, in a favorable season. Many farmers have orchards that will yield five hundred to a thousand pounds of sugar in a year. As this is made at a season interfering very little with the general business of the farm, the sugar that the farmer makes is so much clear gain.

There is, on almost every hill-farm, some place favorable for the growth of a maple orchard--some rocky spots yielding little gra.s.s, and impervious for the plough. Such spots may be favorably chosen for the growth of a maple orchard; and whether the increase be used for manufacturing sugar or mola.s.ses, or for timber or fuel, the proprietor of the land will find a profit better than money at interest in the growth of this beautiful tree, which will spontaneously propagate itself in many positions.

Its great excellence consists in yielding sap for the manufacture of vast quant.i.ties of maple sugar in the country during the months of spring. An open winter, constantly freezing and thawing, is a forerunner of a bountiful crop of sugar. The orchard of maple trees is almost equal to a field of sugar cane of the same area, in the production of sugar. This tree reaches an age of 200 years.

Vermont is the second sugar-producing State in the Union. The amount of maple sugar produced there in 1840 was over 2,550 tons, being more than 17 pounds to each inhabitant, allowing a population of 291,948.

At five cents a pound, this is worth. 255,963 dols. 20 cents.

The Statistics of the United States census for 1850, show that about thirty-five millions of pounds (15,250 tons) of maple sugar were manufactured in that year:--

Maine 97,541 New Hampshire 1,392,489 Ma.s.sachusetts 768,596 Vermont 5,159,641 Connecticut 37,781 New York 10,310,764 New Jersey 5,886 Pennsylvania 2,218,641 Maryland 47,740 Virginia 1,223,908 North Carolina 27,448 South Carolina 200 Georgia 50 Alabama 473 Mississippi 110 Louisiana 260 Arkansas 8,825 Tennessee 159,647 Kentucky 388,525 Ohio 4,528,548 Michigan 2,423,897 Indiana 2,921,638 Illinois 246,078 Missouri 171,942 Iowa 70,684 Missouri 661,969 Minnesota 2,950 ----------- Total 32,776,671

There is a balance of about two million pounds produced by Rhode Island, Texas, Oregon, California, Utah, New Mexico, Delaware, and Florida. The above statement does not include the sugar made by the Indians, east of the Mississippi river, which may be set down at 10,000,000 lbs., and west of that river 2,000,000 lbs.

Besides the above sugar crop, there was a yield by the sugar maple in the United States in 1850, of 40,000,000 gallons of maple mola.s.ses.

_Maize Sugar_.--The stem and branches of Indian corn, during the time that its grain is filling, abounds with sugar, even when grown in this country; so much so, that it might be turned to account by those of the peasantry who have small plots of ground attached to their cottages; and I applied a simple method by which a rich syrup may be obtained from it, equal in sweetness to treacle, and superior to it in flavor. The proper time for cutting down the plant (which should be done within an inch of the ground), is when the corn in the ear is small and full of a milky juice. All the large and old leaves should be stripped off, leaving only the young and tender ones; they should then be cut into short lengths, thoroughly bruised, and the juice entirely pressed out from them. Where the means cannot be obtained for expressing the juice by this method, the following may be employed:--After the plants have been cut into small pieces, put them into a large pot or copper, with only just sufficient water to extract the juice; boil for one hour, and then strain off the liquor; to each gallon of this liquor add a wine-gla.s.s full of lime-water whilst warm; but if it be the expressed juice, obtained as above mentioned, add double the quant.i.ty of lime-water. When the liquor is cold, for every three gallons beat up an egg with some of the liquor; put altogether into a boiler, and boil gently till the syrup acquires the consistence of treacle. Whilst this is going on, the liquor should every now and then be well stirred, and the sc.u.m which rises to the surface taken off. This syrup, which will be found a better subst.i.tute for sugar than treacle, and more wholesome, should be kept in lightly-covered vessels, in a dry place.

My own observations, twelve years ago, acquainted me with the fact, that when the grain in the ear has acquired one half of the full size, the quant.i.ty of sugar in the sap has pa.s.sed its maximum, or begun to decrease, and continues to do so until it disappears entirely. Lopping off the young ears makes shorter work of it. It is like taking the young from an animal giving suck, in which case the milk soon ceases to flow into the breast, and that which produced it is elaborated into other fluids necessary to the nourishment of the different parts of the body of the parent. In the corn-stalk, when deprived of its ears, the elements of sugar are dissipated by increasing the size of the plant.

Sugar may also be obtained from the carrot and the parsnip, as well as from all sweet fruits. It is abundant throughout the vegetable kingdom; it forms the first food of plants when they germinate in the seed; when the first little sprout is projected from a grain of corn, a portion of the farina, or starch, is changed into sugar, which may be called the blood of the plant, and from it is drawn the nourishment necessary to its expansion and appearance above the surface of the earth. In the latter growth of many plants an inverse process is carried on, as in the Indian corn, which I have just spoken of. In this instance, as also numberless others, sugar is formed in large quant.i.ties in the body of the plant, and elaborated into farina, or starch, in the ear. The elements of which sugar and starch are composed are the same; the only difference is in their proportions.

Chemists, being aware of this, have converted starch into sugar; and could do it with certainty to any extent, were any advantage to be gained by it; but hitherto starch has been higher in price than sugar.

SECTION II.

THE GRAIN CROPS, EDIBLE ROOTS, AND FARINACEOUS PLANTS FORMING THE BREAD STUFFS OF COMMERCE.

The vegetable substances, from which man derives his princ.i.p.al sustenance, such as the nutritious cereal grains, the tuberous rooted plants and the trees yielding farina, are very widely diffused, and necessarily occupy the main attention of the cultivator; their products forming the most important staples of domestic and foreign commerce. The cereal gra.s.ses and roots, cultivated in temperate regions, such as wheat, barley, oats, rye, and the potato, are so well known, and have been so fully described by agricultural writers that I shall not go much into details as to their varieties, culture, &c., but confine myself chiefly to their distribution, produce, statistics, and commercial importance. The food plants may be most conveniently arranged under three heads. Firstly--the Grain crops and legumes, which comprises the European cultivated gra.s.ses, wheat, barley, oats, &c.; and the tropical ones of rice, maize, millet, Guinea corn, &c.

Secondly--Palms and other trees yielding farina, including the sago palms, plantain and banana, and the bread fruit tree. And Thirdly--the edible Root crops and Starch producing plants, which are a somewhat extensive cla.s.s, the chief of which, however, are the common potato, yams, cocos or eddoes, sweet potatoes, the bitter and sweet ca.s.sava or manioc, the arrowroot and other plants yielding starch in more or less purity.

There is a great diversity of food, from the humble oak bark bread of the Norwegian peasant, or the Brahmin, whose appet.i.te is satisfied with vegetables, to the luxurious diet of a Hungarian Magnate at Vienna.