The Chemical History of a Candle - Part 2
Library

Part 2

To return to our quiet philosophy. We shall not in future be deceived, therefore, by any changes that are produced in water. Water is the same everywhere, whether produced from the ocean or from the flame of the candle. Where, then, is this water which we get from a candle? I must antic.i.p.ate a little, and tell you. It evidently comes, as to part of it, from the candle; but is it within the candle beforehand? No. It is not in the candle; and it is not in the air round about the candle which is necessary for its combustion. It is neither in one nor the other, but it comes from their conjoint action, a part from the candle, a part from the air; and this we have now to trace, so that we may understand thoroughly what is the chemical history of a candle when we have it burning on our table. How shall we get at this? I myself know plenty of ways, but I want _you_ to get at it from the a.s.sociation in your own minds of what I have already told you.

I think you can see a little in this way. We had just now the case of a substance which acted upon the water in the way that Sir Humphrey Davy shewed us[13], and which I am now going to recall to your minds by making again an experiment upon that dish. It is a thing which we have to handle very carefully, for you see, if I allow a little splash of water to come upon this ma.s.s, it sets fire to part of it; and if there were free access of air, it would quickly set fire to the whole. Now, this is a metal--a beautiful and bright metal--which rapidly changes in the air, and, as you know, rapidly changes in water. I will put a piece on the water, and you see it burns beautifully, making a floating lamp, using the water in the place of air. Again, if we take a few iron filings or turnings, and put them in water, we find that they likewise undergo an alteration. They do not change so much as this pota.s.sium does, but they change somewhat in the same way; they become rusty, and shew an action upon the water, though in a different degree of intensity to what this beautiful metal does: but they act upon the water in the same manner generally as this pota.s.sium. I want you to put these different facts together in your minds. I have another metal here [zinc], and when we examined it with regard to the solid substance produced by its combustion, we had an opportunity of seeing that it burned; and I suppose, if I take a little strip of this zinc and put it over the candle, you will see something half-way, as it were, between the combustion of pota.s.sium on the water and the action of iron,--you see there is a sort of combustion. It has burned, leaving a white ash or residuum, and here also we find that the metal has a certain amount of action upon water.

By degrees we have learned how to modify the action of these different substances, and to make them tell us what we want to know. And now, first of all, I take iron. It is a common thing in all chemical reactions, where we get any result of this kind, to find that it is increased by the action of heat; and if we want to examine minutely and carefully the action of bodies one upon another, we often have to refer to the action of heat. You are aware, I believe, that iron-filings burn beautifully in the air; but I am about to shew you an experiment of this kind, because it will impress upon you what I am going to say about iron in its action on water. If I take a flame and make it hollow;--you know why, because I want to get air to it and into it, and therefore I make it hollow--and then take a few iron-filings and drop them into the flame, you see how well they burn.

That combustion results from the chemical action which is going on when we ignite those particles. And so we proceed to consider these different effects, and ascertain what iron will do when it meets with water. It will tell us the story so beautifully, so gradually and regularly, that I think it will please you very much.

I have here a furnace with a pipe going through it like an iron gun-barrel, and I have stuffed that barrel full of bright iron-turnings, and placed it across the fire, to be made red-hot. We can either send air through the barrel to come in contact with the iron, or we can send steam from this little boiler at the end of the barrel. Here is a stop-c.o.c.k which shuts off the steam from the barrel until we wish to admit it. There is some water in these gla.s.s jars, which I have coloured blue, so that you may see what happens. Now, you know very well that any steam I might send through that barrel, if it went through into the water, would be condensed; for you have seen that steam cannot retain its gaseous form if it be cooled down.

[Ill.u.s.tration: Fig. 14.]

You saw it here [pointing to the tin flask] crushing itself into a small bulk, and causing the flask holding it to collapse; so that if I were to send steam through that barrel, it would be condensed--supposing the barrel were cold: it is, therefore, heated to perform the experiment I am now about to shew you. I am going to send the steam through the barrel in small quant.i.ties; and you shall judge for yourselves, when you see it issue from the other end, whether it still remains steam. Steam is condensible into water, and when you lower the temperature of steam, you convert it back into fluid water; but I have lowered the temperature of the gas which I have collected in this jar, by pa.s.sing it through water after it has traversed the iron barrel, and still it does not change back into water. I will take another test and apply to this gas. (I hold the jar in an inverted position, or my substance would escape.) If I now apply a light to the mouth of the jar, it ignites with a slight noise. That tells you that it is not steam. Steam puts out a fire--it does not burn; but you saw that what I had in that jar burnt. We may obtain this substance equally from water produced from the candle-flame as from any other source. When it is obtained by the action of the iron upon the aqueous vapour, it leaves the iron in a state very similar to that in which these filings were after they were burnt. It makes the iron heavier than it was before. So long as the iron remains in the tube and is heated, and is cooled again without the access of air or water, it does not change in its weight; but after having had this current of steam pa.s.sed over it, it then comes out heavier that it was before, having taken something out of the steam, and having allowed something else to pa.s.s forth, which we see here. And now, as we have another jar full, I will shew you something most interesting. It is a combustible gas; and I might at once take this jar and set fire to the contents, and shew you that it is combustible; but I intend to shew you more if I can. It is also a very light substance.

Steam will condense: this body will rise in the air, and not condense.

[Ill.u.s.tration: Fig. 15]

Suppose I take another gla.s.s jar, empty of all but air: if I examine it with a taper, I shall find that it contains nothing but air. I will now take this jar full of the gas that I am speaking of, and deal with it as though it were a light body. I will hold both upside-down, and turn the one up under the other; and that which did contain the gas procured from the steam, what does it contain now? You will find it now only contains air. But look! Here is the combustible substance [taking the other jar]

which I have poured out of the one jar into the other. It still preserves its quality, and condition, and independence, and therefore is the more worthy of our consideration, as belonging to the products of a candle.

Now, this substance which we have just prepared by the action of iron on the steam or water, we can also get by means of those other things which you have already seen act so well upon the water. If I take a piece of pota.s.sium, and make the necessary arrangements, it will produce this gas; and if, instead, a piece of zinc, I find, when I come to examine it very carefully, that the main reason why this zinc cannot act upon the water continuously as the other metal does, is because the result of the action of the water envelopes the zinc in a kind of protecting coat. We have learned in consequence, that if we put into our vessel only the zinc and water, they by themselves do not give rise to much action, and we get no result. But suppose I proceed to dissolve off this varnish--this enc.u.mbering substance--which I can do by a little acid; the moment I do this, I find the zinc acting upon the water exactly as the iron did, but at the common temperature. The acid in no way is altered, except in its combination with the oxide of zinc, which is produced. I have now poured the acid into the gla.s.s, and the effect is as though I were applying heat to cause this boiling up. There is something coming off from the zinc very abundantly, which is not steam. There is a jar full of it; and you will find that I have exactly the same combustible substance remaining in the vessel, when I hold it upside-down, that I produced during the experiment with the iron barrel. This is what we get from water--the same substance which is contained in the candle.

[Ill.u.s.tration: Fig. 16.]

Let us now trace distinctly the connection between these two points. This is hydrogen--a body cla.s.sed among those things which in Chemistry we call elements, because we can get nothing else out of them. A candle is not an elementary body, because we can get carbon out of it; we can get this hydrogen out of it, or at least out of the water which it supplies. And this gas has been so named hydrogen, because it is that element which, in a.s.sociation with another, generates water. [Footnote: [greek: hudos], "water," and [greek: gennao], "I generate."] Mr. Anderson having now been able to get two or three jars of gas, we shall have a few experiments to make, and I want to shew you the best way of making these experiments. I am not afraid to shew you, for I wish you to make experiments, if you will only make them with care and attention, and the a.s.sent of those around you. As we advance in Chemistry, we are obliged to deal with substances which are rather injurious, if in their wrong places--the acids, and heat, and combustible things we use, might do harm if carelessly employed. If you want to make hydrogen, you can make it easily from bits of zinc, and sulphuric or muriatic acid. Here is what in former times was called the "philosopher's candle." It is a little phial with a cork, and a tube or pipe pa.s.sing through it.

[Ill.u.s.tration: Fig. 17.]

And I am now putting a few little pieces of zinc into it. This little instrument I am going to apply to a useful purpose in our demonstrations--for I want to shew you that you can prepare hydrogen, and make some experiments with it as you please at your own homes. Let me here tell you why I am so careful to fill this phial nearly, and yet not quite full. I do it because the evolved gas, which, as you have seen, is very combustible, is explosive to a considerable extent when mixed with air, and might lead to harm, if you were to apply a light to the end of that pipe before all the air had been swept out of the s.p.a.ce above the water. I am now about to pour in the sulphuric acid. I have used very little zinc, and more sulphuric acid and water, because I want to keep it at work for some time. I therefore take care in this way to modify the proportions of the ingredients, so that I may have a regular supply--not too quick, and not too slow. Supposing I now take a gla.s.s and put it upside-down over the end of the tube, because the hydrogen is light I expect that it will remain in that vessel a little while. We will now test the contents of our gla.s.s to see if there be hydrogen in it. I think I am safe in saying we have caught some [applying a light]. There it is, you see. I will now apply a light to the top of the tube. There is the hydrogen burning. There is our philosophical candle. It is a foolish feeble sort of a flame, you may say; but it is so hot that scarcely any common flame gives out so much heat. It goes on burning regularly, and I am now about to put that flame to burn under a certain arrangement, in order that we may examine its results and make use of the information which we may thereby acquire.

Inasmuch as the candle produces water, and this gas comes out of the water, let us see what this gives us by the same process of combustion that the candle went through when it burnt in the atmosphere; and for that purpose I am going to put the lamp under this apparatus, in order to condense whatever may arise from the combustion within it In the course of a short time you will see moisture appearing in the cylinder, and you will get the water running down the side; and the water from this hydrogen flame will have absolutely the same effect upon all our tests, being obtained by the same general process as in the former case. This hydrogen is a very beautiful substance. It is so light that it carries things up: it is far lighter than the atmosphere; and I dare say I can shew you this by an experiment which, if you are very clever, some of you may even have skill enough to repeat. Here is our generator of hydrogen, and here are some soap-suds. I have an india-rubber tube connected with the hydrogen generator, and at the end of the tube is a tobacco-pipe.

[Ill.u.s.tration: Fig. 18.]

I can thus put the pipe into the suds, and blow bubbles by means of the hydrogen. You observe how the bubbles fall downwards when I blow them with my warm breath; but notice the difference when I blow them with hydrogen.

[The Lecturer here blew bubbles with hydrogen, which rose to the roof of the theatre.] It shews you how light this gas must be in order to carry with it not merely the ordinary soap-bubble, but the larger portion of a drop hanging to the bottom of it. I can shew its lightness in a better way than this; larger bubbles than these may be so lifted up; indeed, in former times balloons used to be filled with this gas. Mr. Anderson will fasten this tube on to our generator, and we shall have a stream of hydrogen here with which we can charge this balloon made of collodion. I need not even be very careful to get all the air out, for I know the power of this gas to carry it up. [Two collodion balloons were inflated, and sent up, one being held by a string.] Here is another larger one made of thin membrane, which we will fill and allow to ascend. You will see they will all remain floating about until the gas escapes.

What, then, are the comparative weights of these substances? I have a table here which will shew you the proportion which their weights bear to each other. I have taken a pint and a cubic foot as the measures, and have placed opposite to them the respective figures. A pint measure of this hydrogen weighs three-quarters of our smallest weight (a grain), and a cubic foot weighs one-twelfth of an ounce; whereas a pint of water weighs 8,750 grains, and a cubic foot of water weighs almost 1,000 ounces. You see, therefore, what a vast difference there is between the weight of a cubic foot of water and a cubic foot of hydrogen.

Hydrogen gives rise to no substance that can become solid, either during combustion or afterwards as a product of its combustion. But when it burns, it produces water only; and if we take a cold gla.s.s and put it over the flame, it becomes damp, and you have water, produced immediately in appreciable quant.i.ty; and nothing is produced by its combustion but the same water which you have seen the flame of the candle produce. It is important to remember that this hydrogen is the only thing in nature which furnishes water as the sole product of combustion.

And now we must endeavour to find some additional proof of the general character and composition of water; and for this purpose I will keep you a little longer, so that at our next meeting we may be better prepared for the subject. We have the power of arranging the zinc which you have seen acting upon the water by the a.s.sistance of an acid, in such a manner as to cause all the power to be evolved in the place where we require it I have behind me a voltaic pile, and I am just about to shew you, at the end of this lecture, its character and power, that you may see what we shall have to deal with when next we meet. I hold here the extremities of the wires which transport the power from behind me, and which I shall cause to act on the water.

We have previously seen what a power of combustion is possessed by the pota.s.sium, or the zinc, or the iron-filings; but none of them shew such energy as this. [The Lecturer here made contact between the two terminal wires of the battery, when a brilliant flash of light was produced.] This light is, in fact, produced by a forty-zinc power of burning: it is a power that I can carry about in my hands, through these wires, at pleasure--although, if I applied it wrongly to myself, it would destroy me in an instant, for it is a most intense thing, and the power you see here put forth while you count five [bringing the poles in contact, and exhibiting the electric light] is equivalent to the power of several thunder-storms, so great is its force[14]. And that you may see what intense energy it has, I will take the ends of the wires which convey the power from the battery, and with it I dare say I can burn this iron file.

Now, this is a chemical power, and one which, when we next meet, I shall apply to water, and shew you what results we are able to produce.

LECTURE IV.

HYDROGEN IN THE CANDLE--BURNS INTO WATER--THE OTHER PART OF WATER--OXYGEN.

I see you are not tired of the candle yet, or I am sure you would not be interested in the subject in the way you are. When our candle was burning, we found it produced water exactly like the water we have around us; and by further examination of this water we found in it that curious body, hydrogen--that light substance of which there is some in this jar. We afterwards saw the burning powers of that hydrogen, and that it produced water. And I think I introduced to your notice an apparatus which I very briefly said was an arrangement of chemical force, or power, or energy, so adjusted as to convey its power to us in these wires; and I said I should use that force to pull the water to pieces, to see what else there was in the water besides hydrogen; because, you remember, when we pa.s.sed the water through the iron tube, we by no means got the weight of water back which we put in, in the form of steam, though we had a very large quant.i.ty of gas evolved. We have now to see what is the other substance present.

That you may understand the character and use of this instrument, let us make an experiment or two. Let us put together, first of all, some substances, knowing what they are, and then see what that instrument does to them. There is some copper (observe the various changes which it can undergo), and here is some nitric acid, and you will find that this, being a strong chemical agent, will act very powerfully when I add it to the copper. It is now sending forth a beautiful red vapour; but as we do not want that vapour, Mr. Anderson will hold it near the chimney for a short time, that we may have the use and beauty of the experiment without the annoyance. The copper which I have put into the flask will dissolve: it will change the acid and the water into a blue fluid, containing copper and other things; and I propose then shewing you how this voltaic battery deals with it; and in the mean-time we will arrange another kind of experiment for you to see what power it has. This is a substance which is to us like water--that is to say, it contains bodies which we do not know of as yet, as water contains a body which we do not know as yet. Now, this solution of a salt[15] I will put upon paper, and spread about, and apply the power of the battery to it, and observe what will happen. Three or four important things will happen which we shall take advantage of. I place this wetted paper upon a sheet of tinfoil, which is convenient for keeping all clean, and also for the advantageous application of the power; and this solution, you see, is not at all affected by being put upon the paper or tinfoil, nor by anything else I have brought in contact with it yet, and which, therefore, is free to us to use as regards that instrument. But first let us see that our instrument is in order. Here are our wires. Let us see whether it is in the state in which it was last time. We can soon tell. As yet, when I bring them together, we have no power, because the conveyers--what we call the electrodes--the pa.s.sages or ways for the electricity--are stopped; but now Mr. Anderson by that [referring to a sudden flash at the ends of the wires] has given me a telegram to say that it is ready. Before I begin our experiment I will get Mr. Anderson to break contact again at the battery behind me, and we will put a platinum-wire across to connect the poles, and then if I find I can ignite a pretty good length of this wire, we shall be safe in our experiment. Now you will see the power. [The connection was established, and the intermediate wire became red-hot.] There is the power running beautifully through the wire, which I have made thin on purpose to shew you that we have those powerful forces; and now, having that power, we will proceed with it to the examination of water.

I have here two pieces of platinum, and if I lay them down upon this piece of paper [the moistened paper on the tinfoil], you will see no action; and if I take them up, there is no change that you can see, but the arrangement remains just as it was before. But, now, see what happens: if I take these two poles and put either one or the other of them down separately on the platinum-plates, they do nothing for me, both are perfectly without action; but if I let them both be in contact at the same moment, see what happens [a brown spot appeared under each pole of the battery]. Look here at the effect that takes place, and see how I have pulled something apart from the white--something brown; and I have no doubt, if I were to arrange it thus, and were to put one of the poles to the tinfoil on the other side of the paper--why, I get such a beautiful action upon the paper, that I am going to see whether I cannot write with it--a telegram, if you please. [The Lecturer here traced the word "juvenile" on the paper with one of the terminal wires.] See there how beautifully we can get our results!

You see we have here drawn something, which we have not known about before, out of this solution. Let us now take that flask from Mr.

Andersen's hands, and see what we can draw out of that. This, you know, is a liquid which we have just made up from copper and nitric acid, whilst our other experiments were in hand; and though I am making this experiment very hastily, and may bungle a little, yet I prefer to let you see what I do rather than prepare it beforehand.

Now, see what happens. These two platinum-plates are the two ends (or I will make them so immediately) of this apparatus; and I am about to put them in contact with that solution just as we did a moment ago on the paper. It does not matter to us whether the solution be on the paper or whether it be in the jar, so long as we bring the ends of the apparatus to it. If I put the two platinums in by themselves, they come out as clean and as white as they go in [inserting them into the fluid without connecting them with the battery]; but when we take the power and lay that on [the platinums were connected with the battery and again dipped into the solution], this, you see [exhibiting one of the platinums], is at once turned into copper, as it were: it has become like a plate of copper; and that [exhibiting the other piece of platinum] has come out quite clean. If I take this coppered piece and change sides, the copper will leave the right-hand side and come over to the left side; what was before the coppered plate comes out clean, and the plate which was clean comes out coated with copper; and thus you see that the same copper we put into this solution we can also take out of it by means of this instrument.

Putting that solution aside, let us now see what effect this instrument will have upon water. Here are two little platinum-plates which I intend to make the ends of the battery, and this (C) is a little vessel so shaped as to enable me to take it to pieces, and shew you its construction. In these two cups (A and B) I pour mercury, which touches the ends of the wires connected with the platinum-plates. In the vessel (C) I pour some water containing a little acid (but which is put only for the purpose of facilitating the action; it undergoes no change in the process), and connected with the top of the vessel is a bent gla.s.s tube (D), which may remind you of the pipe which was connected with the gun barrel in our furnace experiment, and which now pa.s.ses under the jar (F). I have now adjusted this apparatus, and we will proceed to affect the water in some way or other. In the other case, I sent the water through a tube which was made red-hot; I am now going to pa.s.s the electricity through the contents of this vessel. Perhaps I may boil the water; if I do boil the water, I shall get steam; and you know that steam condenses when it gets cold, and you will therefore see by that whether I do boil the water or not.

Perhaps, however, I shall not boil the water, but produce some other effect. You shall have the experiment and see. There is one wire which I will put to this side (A), and here is the other wire which I will put to the other side (B), and you will soon see whether any disturbance takes place. Here it is seeming to boil up famously; but does it boil? Let us see whether that which goes out is steam or not. I think you will soon see the jar (F) will be filled with vapour, if that which rises from the water is steam. But can it be steam? Why, certainly not; because there it remains, you see, unchanged. There it is standing over the water, and it cannot therefore be steam, but must be a permanent gas of some sort What is it? Is it hydrogen? Is it anything else? Well, we will examine it. If it is hydrogen, it will burn. [The Lecturer then ignited a portion of the gas collected, which burnt with an explosion.]

[Ill.u.s.tration: Fig. 19]

It is certainly something combustible, but not combustible in the way that hydrogen is. Hydrogen would not have given you that noise; but the colour of that light, when the thing did burn, was like that of hydrogen: it will, however, burn without contact with the air. That is why I have chosen this other form of apparatus, for the purpose of pointing out to you what are the particular circ.u.mstances of this experiment. In place of an open vessel I have taken one that is closed (our battery is so beautifully active that we are even boiling the mercury, and getting all things right--not wrong, but vigorously right); and I am going to shew you that that gas, whatever it may be, can burn without air, and in that respect differs from a candle, which cannot burn without the air. And our manner of doing this is as follows:--I have here a gla.s.s vessel (G) which is fitted with two platinum-wires (IK), through which I can apply electricity; and we can put the vessel on the air-pump and exhaust the air, and when we have taken the air out we can bring it here and fasten it on to this jar (F), and let into the vessel that gas which was formed by the action of the voltaic battery upon the water, and which we have produced by changing the water into it,--for I may go as far as this, and say we have really, by that experiment, changed the water into that gas.

We have not only altered its condition, but we have changed it really and truly into that gaseous substance, and all the water is there which was decomposed by the experiment. As I screw this vessel (GH) on here (H), and make the tubes well connected, and when I open the stop-c.o.c.ks (HHH), if you watch the level of the water (in F), you will see that the gas will rise. I will now close the stop-c.o.c.ks, as I have drawn up as much as the vessel can hold, and being safely conveyed into that chamber, I will pa.s.s into it an electric spark from this Leyden jar (L), when the vessel, which is now quite clear and bright, will become dim. There will be no sound, for the vessel is strong enough to confine the explosion. [A spark was then pa.s.sed through the jar, when the explosive mixture was ignited.] Did you see that brilliant light? If I again screw the vessel on to the jar, and open these stop-c.o.c.ks, you will see that the gas will rise a second time. [The stop-c.o.c.ks were then opened.] Those gases [referring to the gases first collected in the jar, and which had just been ignited by the electric spark] have disappeared, as you see: their place is vacant, and fresh gas has gone in. Water has been formed from them; and if we repeat our operation [repeating the last experiment], I shall have another vacancy, as you will see by the water rising. I always have an empty vessel after the explosion, because the vapour or gas into which that water has been resolved by the battery explodes under the influence of the spark, and changes into water; and by-and-by you will see in this upper vessel some drops of water trickling down the sides and collecting at the bottom.

We are here dealing with water entirely, without reference to the atmosphere. The water of the candle had the atmosphere helping to produce it; but in this way it can be produced independently of the air. Water, therefore, ought to contain that other substance which the candle takes from the air, and which, combining with the hydrogen, produces water.

Just now you saw that one end of this battery took hold of the copper, extracting it from the vessel which contained the blue solution. It was effected by this wire; and surely we may say, if the battery has such power with a metallic solution which we made and unmade, may we not find that it is possible to split asunder the component parts of the water, and put them into this place and that place? Suppose I take the poles--the metallic ends of this battery--and see what will happen with the water in this apparatus (fig. 20), where we have separated the two ends far apart.

[Ill.u.s.tration: Fig. 20.]

I place one here (at A), and the other there (at B), and I have little shelves with holes which I can put upon each pole, and so arrange them that whatever escapes from the two ends of the battery will appear as separate gases; for you saw that the water did not become vaporous, but gaseous. The wires are now in perfect and proper connection with the vessel containing the water; and you see the bubbles rising: let us collect these bubbles and see what they are. Here is a gla.s.s cylinder (O); I fill it with water and put it over one end (A) of the pile; and I will take another (H) and put it over the other end (B) of the pile. And so now we have a double apparatus, with both places delivering gas. Both these jars will fill with gas. There they go, that to the right (H) filling very rapidly; the one to the left (O) filling not so rapidly; and though I have allowed some bubbles to escape, yet still the action is going on pretty regularly; and were it not that one is rather smaller than the other, you would see that I should have twice as much in this (H) as I have in that (O). Both these gases are colourless; they stand over the water without condensing; they are alike in all things--I mean in all _apparent_ things; and we have here an opportunity of examining these bodies and ascertaining what they are. Their bulk is large, and we can easily apply experiments to them. I will take this jar (H) first, and will ask you to be prepared to recognise hydrogen.

Think of all its qualities--the light gas which stood well in inverted vessels, burning with a pale flame at the mouth of the jar--and see whether this gas does not satisfy all these conditions. If it be hydrogen, it will remain here while I hold this jar inverted. [A light was then applied, when the hydrogen burnt] What is there now in the other jar? You know that the two together made an explosive mixture. But what can this be which we find as the other const.i.tuent in water, and which must therefore be that substance which made the hydrogen burn? We know that the water we put into the vessel consisted of the two things together. We find one of these is hydrogen: what must that other be which was in the water before the experiment, and which we now have by itself? I am about to put this lighted splinter of wood into the gas. The gas itself will not burn, but it will make the splinter of wood burn. [The Lecturer ignited the end of the wood, and introduced it into the jar of gas.] See how it invigorates the combustion of the wood, and how it makes it burn far better than the air would make it burn; and now you see by itself that every other substance which is contained in the water, and which, when the water was formed by the burning of the candle, must have been taken from the atmosphere. What shall we call it, A, B, or C? Let us call it O--call it "Oxygen:" it is a very good distinct-sounding name. This, then, is the oxygen which was present in the water, forming so large a part of it.

We shall now begin to understand more clearly our experiments and researches; because, when we have examined these things once or twice, we shall soon see why a candle burns in the air. When we have in this way a.n.a.lysed the water--that is to say, separated, or electrolysed its parts out of it--we get two volumes of hydrogen, and one of the body that burns it. And these two are represented to us on the following diagram, with their weights also stated; and we shall find that the oxygen is a very heavy body by comparison with the hydrogen. It is the other element in water.

I had better, perhaps, tell you now how we get this oxygen abundantly, having shewn you how we can separate it from the water. Oxygen, as you will immediately imagine, exists in the atmosphere; for how should the candle burn to produce water without it?

_____________________

1

8

Oxygen.

Oxygen, . . . . 88.9

_________

Hydrogen, . . . 11.1

Hydrogen.

-----

9 Water,. . . . . 100.0

___________

Such a thing would be absolutely impossible, and chemically impossible, without oxygen.

[Ill.u.s.tration: Fig. 21.]

Can we get it from the air? Well, there are some very complicated and difficult processes by which we can get it from the air; but we have better processes. There is a substance called the black oxide of manganese: it is a very black-looking mineral, but very useful, and when made red-hot it gives out oxygen. Here is an iron bottle which has had some of this substance put into it, and there is a tube fixed to it, and a fire ready made, and Mr. Anderson will put that retort into the fire, for it is made of iron, and can stand the heat. Here is a salt called chlorate of pota.s.sa, which is now made in large quant.i.ties for bleaching, and chemical and medical uses, and for pyrotechnic and other purposes. I will take some and mix it with some of the oxide of manganese (oxide of copper, or oxide of iron would do as well); and if I put these together in a retort, far less than a red heat is sufficient to evolve this oxygen from the mixture. I am not preparing to make much, because we only want sufficient for our experiments; only, as you will see immediately, if I use too small a charge, the first portion of the gas will be mixed with the air already in the retort, and I should be obliged to sacrifice the first portion of the gas, because it would be so much diluted with air; the first portion must therefore be thrown away. You will find in this case, that a common spirit-lamp is quite sufficient for me to get the oxygen, and so we shall have two processes going on for its preparation.

See how freely the gas is coming over from that small portion of the mixture. We will examine it, and see what are its properties. Now, in this way we are producing, as you will observe, a gas just like the one we had in the experiment with the battery, transparent, undissolved by water, and presenting the ordinary visible properties of the atmosphere. (As this first jar contains the air, together with the first portions of the oxygen set free during the preparation, we will carry it out of the way, and be prepared to make our experiments in a regular, dignified manner.) And, inasmuch as that power of making wood, wax, or other things burn, was so marked in the oxygen we obtained by means of the voltaic battery from water, we may expect to find the same property here. We will try it You see there is the combustion of a lighted taper in air, and here is its combustion in this gas [lowering the taper into the jar]. See how brightly and how beautifully it burns! You can also see more than this,--you will perceive it is a heavy gas, whilst the hydrogen would go up like a balloon, or even faster than a balloon, when not enc.u.mbered with the weight of the envelope.

[Ill.u.s.tration: Fig. 22.]

You may easily see that although we obtained from water twice as much in volume of the hydrogen as of oxygen, it does not follow that we have twice as much in weight--because one is heavy, and the other a very light gas.

We have means of weighing gases or air; but without stopping to explain, that, let me just tell you what their respective weights are. The weight of a pint of hydrogen is three-quarters of a grain; the weight of the same quant.i.ty of oxygen is nearly twelve grains. This is a very great difference. The weight of a cubit foot of hydrogen is one-twelfth of an ounce; and the weight of a cubit foot of oxygen is one ounce and a third.

And so on we might come to ma.s.ses of matter which may be weighed in the balance, and which we can take account of as to hundredweights and as to tons, as you will see almost immediately.

Now, as regards this very property of oxygen supporting combustion, which we may compare to air, I will take a piece of candle to shew it you in a rough way, and the result will be rough. There is our candle burning in the air: how will it burn in oxygen? I have here a jar of this gas, and I am about to put it over the candle for you to compare the action of this gas with that of the air. Why, look at it: it looks something like the light you saw at the poles of the voltaic battery. Think how vigorous that action must be! And yet, during all that action, nothing more is produced than what is produced by the burning of the candle in air. We have the same production of water, and the same phenomena exactly, when we use this gas instead of air, as we have when the candle is burnt in air.