The Automobile Storage Battery - Part 33
Library

Part 33

Immediately at the end of the four-hour discharge, put the battery on the line and charge it at the normal rate prescribed in the Initial Charge rate table until a state of complete charge, as noted by cell voltage and gravity is reached. This charging time should be about sixteen hours.

Any adjustments of electrolyte found necessary at the end of this charging period in the same manner prescribed in paragraph No. 5, for such adjustments made just before the completion of the initial fifty-two hour charge.

(TRANSCRIBER'S NOTE: No item number 7. in original publication.)

8. At the end of the fifty-two hour charge, or, if the Development discharge has been given, at the end of the Development Cycle Charge, replace the vent plugs, wash all exterior surfaces with clean water and dry quickly. The battery is then ready for service.

INSTALLING A BATTERY ON A CAR

A battery must be installed carefully on the car if it is to have any chance to give good service. Careless installation of a battery which is in good working order will invariably lead to trouble in a very short time. On the other hand, a properly installed battery is, nine times out of ten, a good working and long lived battery.

After you have removed the old battery, sc.r.a.pe all rust and corrosion from the inside of the battery box or compartment in which the battery is placed. This can best be done with a putty knife and wire brush. If you find that electrolyte has been spilled in the box, pour a saturated solution of baking soda on the parts affected so as to neutralize the acid. Then wipe the inside of the box dry and paint it with a good acid proof paint.

Next take out the hold down bolts. Clean them with a wire brush, and oil the threads on the bolt and in the nut to make them work easily.

It is very important that this oiling be done, as the oil protects the bolts from corrosion, and to remove the nuts from a corroded bolt is an extremely difficult and aggravating piece of work, often resulting in the bolts being broken. Should such bolts become loose while the car is in use, it is hard to tighten them.

Wooden strips found in the battery box should be thoroughly cleaned and sc.r.a.ped, and then painted with acid proof paint. When you lower the battery into its box, lower it all the way gently. Do not lower it within an inch or so of the bottom of the case and then drop it. This will result in broken jars and plate lugs. Turn the hold downs tight, but not so tight as to break the sealing compound at the ends of the battery, thereby causing electrolyte to leak out, and battery to become a "slopper".

Cables and connectors should be sc.r.a.ped bright with a knife and brushed thoroughly with the wire brush to remove all corrosion. Old tape which has become acid soaked should be removed and the cable or wire underneath cleaned. Before applying new tape, take a small round bristle brush and paint Vaseline liberally over the exposed cable immediately back of the taper terminal. Then cover the Vaseline with tape, which Should be run well back from the terminal. The Vaseline prevents the corrosion of the cable and the tape holds the Vaseline in place. After the tape has been applied, paint it with acid proof paint. Cover the terminals of the battery with Vaseline. Cables must have enough slack to prevent strains from being put on the battery terminals.

By following these directions, you will not only have a properly installed battery, which will have a good chance to give good service, but will have a neat looking job which is most pleasing to the eye of the car owner.

Remove all dirt from the battery and cable terminals and thoroughly clean the surfaces which are to connect together, but do not sc.r.a.pe off the lead coating. Apply a heavy coating of pure Vaseline to these surfaces and tighten the connection perfectly, squeezing out the Vaseline. Then give the whole connection a heavy coating of Vaseline.

This is very important in order to prevent connection trouble.

If battery is installed in an enclosing box, be sure that none of the ventilating holes are clogged.

STORING BATTERIES

When a battery is not in active use on a car it should be put into storage. Storage is necessary:

1. When a car is to stand idle for a considerable period, such as is the case when it is held for future delivery.

2. When a car is laid up for the winter.

3. When batteries are kept in stock.

Batteries may be stored "wet," i.e., completely a.s.sembled and filled with electrolyte, or "dry," i.e., in a dry disa.s.sembled condition, without electrolyte. In deciding whether a battery should be stored "wet" or "dry," two things are to be considered, i.e. the length of time the battery is to be in storage, and the condition of the battery. If a battery is to be out of commission for a year or more, it should be put into "dry" storage. If it is to be in storage for less than one year, it may be put into "wet" storage if it is in a good condition. If the condition of the battery is such that it will need to be dismantled soon for repairs, it should be put into "dry"

storage, even though it is to be out of service for less than one year.

Batteries in "dry" storage require no attention while they are in storage, but they must be dismantled before being put into storage and rea.s.sembled when put back into service.

When a battery is brought in to be stored, note its general condition carefully.

(a) Its General Appearance-condition of case, handles, terminals, sealing compound, and so on.

(b) Height and specific gravity of the electrolyte in each cell.

(c) Age of Battery. Question owner as to length of time he has had battery. Read date marks on battery if there are any, or determine age by the age code. See page 243. If a battery is less than a year old, is in good condition, and is to be stored for less than one year, it may be put into "wet" storage. If it is more than a year old, put it into dry storage, unless it is in first cla.s.s shape and is to be stored for only several months.

After making your general observations, clean the battery, add distilled water to bring the electrolyte up to the proper level, put the battery on charge and keep it on the line until it is fully charged. Watch for any abnormal condition during the charge, such as excessive temperature rise, failure of voltage to come up, failure of specific gravity to come up, and ga.s.sing before gravity becomes constant.

If no abnormal conditions develop during the charge, put the battery on discharge at a rate which will cause the voltage to drop to 1.7 volts per cell in about four hours. Measure the cell voltages at regular intervals during the discharge test. If the voltage of any cell drops much more rapidly than that of the other cells, that cell is defective in some way, and should be opened for inspection. If the voltage of all cells drops to 1.7 in three hours or less, the battery should be put into dry storage.

After completing the discharge test, recharge it fully, no matter whether it is to be put into wet or dry storage.

If no trouble developed during the charge or discharge, the battery may be put into "wet" storage. If trouble did develop, the battery should be put into "dry" storage.

If dry storage is found to be necessary the owner should be informed that the condition of his battery would cause it to deteriorate in wet storage and necessitate much more expensive repairs when put into use again than will be necessary in the thorough overhauling and rejuvenation of dry storage. He should be advised that dry storage involves dismantling, drying out elements and rea.s.sembling with the needed repairs and new separators in the Spring. Be sure that the customer understands this. If it is evident that repairs or new parts, involving costs additional to storage charges, will be necessary, tell him so. Do not leave room for a complaint about costs in the Spring.

To avoid any misunderstanding, it is highly advisable to have the customer put his signature on a STORAGE AGREEMENT which states fully the terms under which the battery is accepted for storage. The storage cost may be figured on a monthly basis, or a price for the entire storage period may be agreed upon. The monthly rate should be the same as the regular price for a single battery recharge. If a flat rate is paid for the entire storage period, $2.00 to $3.00 is a fair price.

"Wet" Storage

1. Store the batteries on a bench or shelf in a convenient location and large enough to allow a little air s.p.a.ce around each battery.

2. Place each battery upon wooden strips in order to keep the bottom of the battery clear of the bench or shelf.

3. Apply Vaseline freely to the battery terminals, and to exposed copper wires in the battery cables if the cables are burned directly to the battery terminals. If the cables are not burned on, remove them from the battery.

4. If convenient, install the necessary wiring, switches, etc., so that batteries may be connected up and charged where they stand.

Otherwise the batteries must be charged occasionally oil the charging bench.

[Fig. 151 Batteries connected for trickle charge]

5. Batteries in wet storage may be charged by the Exide "Trickle"

charge method, or may be given a bench charge at regular intervals.

6. Bench Charge Method.--Once every month, add distilled water to replace evaporation. Then give battery a bench charge. See page 198.

Before putting battery into service repeat this process and just before putting the battery into service, make the high rate discharge test on it. See page 266.

7. Trickle Charge Method.--This consists of charging the batteries in storage continuously at a very low rate, which is so low that no ga.s.sing occurs, and still gives enough charge to maintain the batteries in good condition. In many cases the "Trickle" Charge method will be found more convenient than the bench charge method, and it has the advantage of keeping the batteries in condition for putting into service on short notice. It should, however, be used only where direct current lighting circuits are available.

In the "Trickle" method, the batteries are first given a complete bench charge, and are then connected in series across a charging circuit with one or several incandescent lamps in series with the batteries to limit the current. In Fig. 151, an example of connections for a "Trickle" charge is given. The charging current for different sized batteries varies from 0.05 to 0.15 ampere. The following table gives the lamps required to give the desired current on 110 volt circuit.

In each case, the lamps are connected in series with the batteries.

The "2-25 watt, (lamps), in parallel" listed in the table are to be connected in parallel with each other and then in series with the batteries. The same is true of the "3-25 watt (lamps), in series"

listed in the table.

Series on 115 Volt Line

Amp. Hours No. of Cells No. 115 Volt Capacity Amperes in Series Lamps Required 5 Amp. Rate Approximate on Line 115 Volt -- -- --- ----- 50 or less 0.05 3 5-15 watt, in series 50 or less 0.05 30 2-15 watt, in series 50 or less 0.05 45 1-15 watt, in series 50-100 0.10 3 3-25 watt, in series 50-100 0.10 3 1-25 watt, in series 50-100 0.10 45 2-25 watt, in parallel 100 or over 0.15 3 2-25 watt, in series 100 or over 0.15 30 1-25 watt, in series 100 or over 0.15 45 3-25 watt, in parallel