The Antiquity of Man - Part 28
Library

Part 28

We have seen in the preceding chapters that the mountains of Scandinavia, Scotland, and North Wales have served, during the glacial period, as so many independent centres for the dispersion of erratic blocks, just as at present the ice-covered continent of North Greenland is sending down ice in all directions to the coast, and filling Baffin's Bay with floating bergs, many of them laden with fragments of rocks.

Another great European centre of ice-action during the Pleistocene period was the Alps of Switzerland, and I shall now proceed to consider the chronological relations of the extinct Alpine glaciers to those of more northern countries previously treated of. [32]

The Alps lie far south of the limits of the northern drift described in the foregoing pages, being situated between the 44th and 47th degrees of north lat.i.tude. On the flanks of these mountains, and on the sub-Alpine ranges of hills or plains adjoining them, those appearances which have been so often alluded to, as distinguishing or accompanying the drift, between the 50th and 70th parallels of north lat.i.tude, suddenly reappear and a.s.sume, in a southern region, a truly arctic development. Where the Alps are highest, the largest erratic blocks have been sent forth; as, for example, from the regions of Mont Blanc and Monte Rosa, into the adjoining parts of Switzerland and Italy; while in districts where the great chain sinks in alt.i.tude, as in Carinthia, Carniola, and elsewhere, no such rocky fragments, or a few only and of smaller bulk, have been detached and transported to a distance.

In the year 1821, M. Venetz first announced his opinion that the Alpine glaciers must formerly have extended far beyond their present limits, and the proofs appealed to by him in confirmation of this doctrine were afterwards acknowledged by M. Charpentier, who strengthened them by new observations and arguments, and declared in 1836 his conviction that the glaciers of the Alps must once have reached as far as the Jura, and have carried thither their moraines across the great valley of Switzerland.

M. Aga.s.siz, after several excursions in the Alps with M. Charpentier, and after devoting himself some years to the study of glaciers, published in 1840 an admirable description of them and of the marks which attest the former action of great ma.s.ses of ice over the entire surface of the Alps and the surrounding country.*

(* Aga.s.siz, "Etudes sur les Glaciers et Systeme Glaciaire.")

He pointed out that the surface of every large glacier is strewed over with gravel and stones detached from the surrounding precipices by frost, rain, lightning, or avalanches. And he described more carefully than preceding writers the long lines of these stones, which settle on the sides of the glacier, and are called the lateral moraines; those found at the lower end of the ice being called terminal moraines.

Such heaps of earth and boulders every glacier pushes before it when advancing, and leaves behind it when retreating. When the Alpine glacier reaches a lower and a warmer situation, about 3000 or 4000 feet above the sea, it melts so rapidly that, in spite of the downward movement of the ma.s.s, it can advance no farther. Its precise limits are variable from year to year, and still more so from century to century; one example being on record of a recession of half a mile in a single year.

We also learn from M. Venetz, that whereas, between the eleventh and fifteenth centuries, all the Alpine glaciers were less advanced than now, they began in the seventeenth and eighteenth centuries to push forward, so as to cover roads formerly open, and to overwhelm forests of ancient growth.

These oscillations enable the geologist to note the marks which a glacier leaves behind it as it retrogrades; and among these the most prominent, as before stated, are the terminal moraines, or mounds of unstratified earth and stones, often divided by subsequent floods into hillocks, which cross the valley like ancient earthworks, or embankments made to dam up a river. Some of these transverse barriers were formerly pointed out by Saussure below the glacier of the Rhone, as proving how far it had once transgressed its present boundaries. On these moraines we see many large angular fragments, which, having been carried along the surface of the ice, have not had their edges worn off by friction; but the greater number of the boulders, even those of large size, have been well rounded, not by the power of water, but by the mechanical force of the ice, which has pushed them against each other, or against the rocks flanking the valley. Others have fallen down the numerous fissures which intersect the glacier, where, being subject to the pressure of the whole ma.s.s of ice, they have been forced along, and either well rounded or ground down into sand, or even the finest mud, of which the moraine is largely const.i.tuted.

As the terminal moraines are the most prominent of all the monuments left by a receding glacier, so are they the most liable to obliteration; for violent floods or debacles are sometimes occasioned in the Alps by the sudden bursting of glacier-lakes, or those temporary sheets of water before alluded to which are caused by the damming up of a river by a glacier which has increased during a succession of cold seasons, and descending from a tributary into the main valley, has crossed it from side to side. On the failure of this icy barrier the acc.u.mulated waters, being let loose, sweep away and level many a transverse mound of gravel and loose boulders below, and spread their materials in confused and irregular beds over the river-plain.

Another mark of the former action of glaciers in situations where they exist no longer, is the polished, striated, and grooved surfaces of rocks before described. Stones which lie underneath the glacier and are pushed along by it sometimes adhere to the ice, and as the ma.s.s glides slowly along at the rate of a few inches, or at the utmost 2 or 3 feet per day, abrade, groove, and polish the rock, and the larger blocks are reciprocally grooved and polished by the rock on their lower sides. As the forces both of pressure and propulsion are enormous, the sand acting like emery polishes the surface; the pebbles, like coa.r.s.e gravers, scratch and furrow it; and the large stones scoop out grooves in it.

Lastly, projecting eminences of rock, called "roches moutonnees," are smoothed and worn into the shape of flattened domes where the glaciers have pa.s.sed over them.

Although the surface of almost every kind of rock when exposed to the open air wastes away by decomposition, yet some retain for ages their polished and furrowed exterior: and if they are well protected by a covering of clay or turf, these marks of abrasion seem capable of enduring for ever. They have been traced in the Alps to great heights above the present glaciers, and to great horizontal distances beyond them.

Another effect of a glacier is to lodge a ring of stones round the summit of a conical peak which may happen to project through the ice.

If the glacier is lowered greatly by melting, these circles of large angular fragments, which are called "perched blocks," are left in a singular situation near the top of a steep hill or pinnacle, the lower parts of which may be dest.i.tute of boulders.

ALPINE ERRATIC BLOCKS ON THE JURA.

Now some or all the marks above enumerated,--the moraines, erratics, polished surfaces, domes, striae, and perched rocks--are observed in the Alps at great heights above the present glaciers and far below their actual extremities; also in the great valley of Switzerland, 50 miles broad; and almost everywhere on the Jura, a chain which lies to the north of this valley. The average height of the Jura is about one-third that of the Alps, and it is now entirely dest.i.tute of glaciers; yet it presents almost everywhere moraines, and polished and grooved surfaces of rocks. The erratics, moreover, which cover it present a phenomenon which has astonished and perplexed the geologist for more than half a century. No conclusion can be more incontestable than that these angular blocks of granite, gneiss, and other crystalline formations, came from the Alps, and that they have been brought for a distance of 50 miles and upwards across one of the widest and deepest valleys of the world; so that they are now lodged on the hills and valleys of a chain composed of limestone and other formations, altogether distinct from those of the Alps. Their great size and angularity, after a journey of so many leagues, has justly excited wonder, for hundreds of them are as large as cottages; and one in particular, composed of gneiss, celebrated under the name of Pierre a Bot, rests on the side of a hill about 900 feet above the lake of Neufchatel, and is no less than 40 feet in diameter.

But there are some far-transported ma.s.ses of granite and gneiss which are still larger, and which have been found to contain 50,000 and 60,000 cubic feet of stone; and one limestone block at Devens, near Bex, which has travelled 30 miles, contains 161,000 cubic feet, its angles being sharp and unworn.

Von Buch, Escher, and Studer inferred, from an examination of the mineral composition of the boulders, that those resting on the Jura, opposite the lakes of Geneva and Neufchatel, have come from the region of Mont Blanc and the Valais, as if they had followed the course of the Rhone to the lake of Geneva, and had then pursued their way uninterruptedly in a northerly direction.

M. Charpentier, who conceived the Alps in the period of greatest cold to have been higher by several thousand feet than they are now, had already suggested that the Alpine glaciers once reached continuously to the Jura, conveying thither the large erratics in question.*

(* D'Archiac, "Histoire des Progres" etc. volume 2 page 249.)

M. Aga.s.siz, on the other hand, instead of introducing distinct and separate glaciers, imagined that the whole valley of Switzerland might have been filled with ice, and that one great sheet of it extended from the Alps to the Jura, the two chains being of the same height as now relatively to each other. To this idea it was objected that the difference of alt.i.tude, when distributed over a s.p.a.ce of 50 miles, would give an inclination of two degrees only, or far less than that of any known glacier. In spite of this difficulty, the hypothesis has since received the support of Professor James Forbes in his very able work on the Alps published in 1843.

In 1841, I advanced jointly with Mr. Darwin* the theory that the erratics may have been transferred by floating ice to the Jura, at the time when the greater part of that chain and the whole of the Swiss valley to the south was under the sea.

(* See "Elements of Geology" 2nd edition 1841.)

We pointed out that if at that period the Alps had attained only half their present alt.i.tude they would yet have const.i.tuted a chain as lofty as the Chilean Andes, which in a lat.i.tude corresponding to Switzerland now send down glaciers to the head of every sound, from which icebergs covered with blocks of granite are floated seaward. Opposite that part of Chile where the glaciers abound is situated the island of Chiloe 100 miles in length with a breadth of 30 miles, running parallel to the continent. The channel which separates it from the main land is of considerable depth and 25 miles broad. Parts of its surface, like the adjacent coast of Chile, are overspread with Recent marine sh.e.l.ls, showing an upheaval of the land during a very modern period; and beneath these sh.e.l.ls is a boulder deposit in which Mr. Darwin found large blocks of granite and syenite which had evidently come from the Andes.

A continuance in future of the elevatory movement now observed to be going on in this region of the Andes and of Chiloe might cause the former chain to rival the Alps in alt.i.tude and give to Chiloe a height equal to that of the Jura. The same rise might dry up the channel between Chiloe and the main land so that it would then represent the great valley of Switzerland.

Sir Roderick I. Murchison, after making several important geological surveys of the Alps, proposed in 1849 a theory agreeing essentially with that suggested by Mr. Darwin and myself, namely that the erratics were transported to the Jura at a time when the great strath of Switzerland and many valleys receding far into the Alps were under water. He thought it impossible that the glacial detritus of the Rhone could ever have been carried to the Lake of Geneva and beyond it by a glacier, or that so vast a body of ice issuing from one narrow valley could have spread its erratics over the low country of the cantons of Vaud, Fribourg, Berne, and Soleure, as well as the slopes of the Jura, comprising a region of about 100 miles in breadth from south-west to north-east, as laid down in the map of Charpentier. He therefore imagined the granitic blocks to have been translated to the Jura by ice-floats when the intermediate country was submerged.*

(* "Quarterly Journal of the Geological Society" volume 6 1850 page 65.)

It may be remarked that this theory, provided the water be a.s.sumed to have been salt or brackish, demands quite as great an oscillation in the level of the land as that on which Charpentier had speculated, the only difference being that the one hypothesis requires us to begin with a subsidence of 2500 or 3000 feet, and the other with an elevation to the same amount. We should also remember that the crests or watersheds of the Alps and Jura are about 80 miles apart, and if once we suppose them to have been in movement during the glacial period it is very probable that the movements at such a distance may not have been strictly uniform. If so the Alps may have been relatively somewhat higher, which would have greatly facilitated the extension of Alpine glaciers to the flanks of the less elevated chain.

Five years before the publication of the memoir last mentioned, M. Guyot had brought forward a great body of new facts in support of the original doctrine of Charpentier, that the Alpine glaciers once reached as far as the Jura and that they had deposited thereon a portion of their moraines.*

(* "Bulletin de la Societe des Sciences Naturelles de Neufchatel" 1845.)

The scope of his observations and argument was laid with great clearness before the British public in 1852 by Mr. Charles Maclaren, who had himself visited Switzerland for the sake of forming an independent opinion on a theoretical question of so much interest and on which so many eminent men of science had come to such opposite conclusions.*

(* "Edinburgh New Philosophical Magazine" October 1852.)

M. Guyot had endeavoured to show that the Alpine erratics, instead of being scattered at random over the Jura and the great plain of Switzerland, are arranged in a certain determinate order strictly a.n.a.logous to that which ought to prevail if they had once const.i.tuted the lateral, medial, and terminal moraines of great glaciers. The rocks chiefly relied on as evidence of this distribution consist of three varieties of granite, besides gneiss, chlorite-slate, euphotide, serpentine, and a peculiar kind of conglomerate, all of them foreign alike to the great Strath between the Alps and Jura and to the structure of the Jura itself. In these two regions limestones, sandstones, and clays of the Secondary and Tertiary formations alone crop out at the surface, so that the travelled fragments of Alpine origin can easily be distinguished and in some cases the precise localities pointed out from whence they must have come.

[Ill.u.s.tration: Figure 42. Map of Ancient Glacier]

(FIGURE 42. MAP SHOWING THE SUPPOSED COURSE OF THE ANCIENT AND NOW EXTINCT GLACIER OF THE RHONE, AND THE DISTRIBUTION OF THE ERRATIC BLOCKS AND DRIFT CONVEYED BY IT TO THE GREAT VALLEY OF SWITZERLAND AND THE JURA.)

The accompanying map or diagram (Figure 42) slightly altered from one given by Mr. Maclaren will enable the reader more fully to appreciate the line of argument relied on by M. Guyot. The dotted area is that over which the Alpine fragments were spread by the supposed extinct glacier of the Rhone. The site of the present reduced glacier of that name is shown at A. From that point the boulders may first be traced to B, or Martigny, where the valley takes an abrupt turn at right angles to its former course. Here the blocks belonging to the right side of the river or derived from c d e have not crossed over to the left side at B, as they should have done had they been transported by floating ice, but continue to keep to the side to which they belonged, a.s.suming that they once formed part of a right lateral moraine of a great extinct glacier.

That glacier, after arriving at the lower end of the long narrow valley of the upper Rhone at F, filled the Lake of Geneva, F, I, with ice. From F, as from a great vomitory, it then radiated in all directions bearing along with it the moraines with which it was loaded and spreading them out on all sides over the great plain. But the princ.i.p.al icy ma.s.s moved straight onwards in a direct line towards the hill of Cha.s.seron, G (precisely opposite F), where the Alpine erratics attain their maximum of height on the Jura, that is to say 2015 English feet above the level of the Lake of Neufchatel or 3450 feet above the sea. The granite blocks which have ascended to this eminence G came from the east shoulder of Mont Blanc h, having travelled in the direction B, F, G.

When these and the accompanying blocks resting on the south-eastern declivity of the Jura are traced from their culminating point G in opposite directions, whether westward towards Geneva or eastwards towards Soleure, they are found to decline in height from the middle of the arc G towards the two extremities I and K, both of which are at a lower level than G, by about 1500 feet. In other words the ice of the extinct glacier, having mounted up on the sloping flanks of the Jura in the line of greatest pressure to its highest elevation, began to decline laterally in the manner of a pliant or viscous ma.s.s with a gentle inclination till it reached two points distant from each other no less than 100 miles. [33]

In further confirmation of this theory M. Guyot observed that fragments derived from the right bank of the great valley of the Rhone c d e are found on the right side of the great Swiss basin or Strath as at l and m, while those derived from the left bank p h occur on the left side of the basin or on the Jura between G and I; and those again derived from places farthest up on the left bank and nearest the source of the Rhone, as n o, occupy the middle of the great basin, const.i.tuting between m and K what M. Guyot calls the frontal or terminal moraine of the eastern prolongation of the old glacier.

A huge boulder of talcose granite, now at Steinhoff, 10 miles east from K, or Soleure, containing 61,000 French cubic feet, or equal in bulk to a ma.s.s measuring 40 feet in every direction, was ascertained by Charpentier from its composition to have been derived from n, one of the highest points on the left side of the Rhone valley far above Martigny.

From this spot it must have gone all round by F, which is the only outlet to the deep valley, so as to have performed a journey of no less than 150 miles!

GENERAL TRANSPORTATION OF ERRATICS IN SWITZERLAND DUE TO GLACIERS AND NOT TO FLOATING ICE.

It is evident that the above described restriction of certain fragments of peculiar lithological character to that bank of the Rhone where the parent rocks are alone met with and the linear arrangement of the blocks in corresponding order on the opposite side of the great plain of Switzerland, are facts which harmonise singularly well with the theory of glaciers while they are wholly irreconcilable with that of floating ice. Against the latter hypothesis all the arguments which Charpentier originally brought forward in opposition to the first popular doctrine of a grand debacle or sudden flood rushing down from the Alps to the Jura might be revived. Had there ever been such a rush of muddy water, said he, the blocks carried down the basins of the princ.i.p.al Swiss rivers, such as the Rhone, Aar, Reuss, and Limmat, would all have been mingled confusedly together instead of having each remained in separate and distinct areas as they do and should do according to the glacial hypothesis.

M. Morlot presented me in 1857 with an unpublished map of Switzerland in which he had embodied the results of his own observations and those of MM. Guyot, Escher, and others, marking out by distinct colours the limits of the ice-transported detritus proper to each of the great river-basins. The arrangement of the drift and erratics thus depicted accords perfectly well with Charpentier's views and is quite irreconcilable with the supposition of the scattered blocks having been dispersed by floating ice when Switzerland was submerged.

As opposed to the latter hypothesis, I may also state that nowhere as yet have any marine sh.e.l.ls or other fossils than those of a terrestrial character, such as the bones of the mammoth and a few other mammalia and some coniferous wood, been detected in those drifts, though they are often many hundreds of feet in thickness.

A glance at M. Morlot's map, above mentioned,* will show that the two largest areas, indicated by a single colour, are those over which the Rhone and the Rhine are supposed to have spread out in ancient times their enormous moraines.

(* See map, "Quarterly Journal of the Geological Society"

volume 18 1862 page 185 Plate 18.)

One of these only, that of the Rhone, has been exhibited in our diagram, Figure 42. The distinct character of the drift in the two cases is such as it would be if two colossal glaciers should now come down from the higher Alps through the valleys traversed by those rivers, leaving their moraines in the low country. The s.p.a.ce occupied by the glacial drift of the Rhine is equal in dimensions or rather exceeds that of the Rhone, and its course is not interfered with in the least degree by the Lake of Constance, 45 miles long, any more than is the dispersion of the erratics of the Rhone by the Lake of Geneva, about 50 miles in length.

The angular and other blocks have in both instances travelled on precisely as if those lakes had no existence, or as if, which was no doubt the case, they had been filled with solid ice.

During my last visit to Switzerland in 1857, I made excursions, in company with several distinguished geologists, for the sake of testing the relative merits of the two rival theories above referred to, and I examined parts of the Jura above Neufchatel in company with M. Desor, the country round Soleure with M. Langen, the southern side of the great strath near Lausanne with M. Morlot, the basin of the Aar around Berne with M. Escher von der Linth; and having satisfied myself that all the facts which I saw north of the Alps were in accordance with M. Guyot's views, I crossed to the Italian side of the great chain and became convinced that the same theory was equally applicable to the ancient moraines of the plains of the Po.

M. Escher pointed out to me at Trogen in Appenzel on the left bank of the Rhine fragments of a rock of a peculiar mineralogical character, commonly called the granite of Pontelyas, the natural position of which is well known near Trons, 100 miles from Trogen, on the left bank of the Rhine about 30 miles from the source of that river. All the blocks of this peculiar granite keep to the left bank, even where the valley turns almost at right angles to its former course near Mayenfeld below Chur, making a sharp bend resembling that of the valley of the Rhone at Martigny. The granite blocks, where they are traced to the low country, still keep to the left side of the Lake of Constance. That they should not have crossed over to the opposite river-bank below Chur is quite inexplicable if, rejecting the aid of land-ice, we appeal to floating ice as the transporting power.