Psychology - Part 7
Library

Part 7

The Auditory Centers

Besides the motor aphasia, just mentioned, there is another type, called _sensory aphasia_, or, more precisely, auditory aphasia. In pure auditory aphasia there is no inability to p.r.o.nounce words or even to speak fluently, but there is, first, an inability to "hear words", sometimes called word deafness, and there is often also an inability to find the right words to speak, so that the individual so afflicted, while speaking fluently enough and having sense in mind, misuses his words and utters a perfect jargon. One old gentleman mystified his friends one morning by declaring that he must go and "have his umbrella washed", till it was finally discovered that what he wanted was to have his hair cut.

The cortical area affected in this form of aphasia is located a little further back on the surface of the brain than {60} the motor speech center, being close to the auditory area proper. The latter is a small cortical region in the temporal lobe, connected (through lower centers) with the ear, and is the only part of the cortex to receive nerve currents from the organ of hearing. The auditory area is, indeed, the organ of hearing, or an organ of hearing, for without it the individual is deaf. He may make a few reflex responses to loud noises, but, consciously, he does not hear at all; he has no auditory sensations.

In the immediate neighborhood of the auditory area proper (or of the "auditory-sensory area", as it may well be called), are portions of the cortex intimately connected by axons with it, and concerned in what may be called auditory perceptions, i.e., with recognizing and understanding sounds. Probably different portions of the cortex near the auditory-sensory center have to do with different sorts of auditory perception. At least, we sometimes find individuals who, as a result of injury or disease affecting this general region, are unable any longer to follow and appreciate music. They cannot "catch the tune" any longer, though they may have been fine musicians before this portion of their cortex was destroyed. In other cases, we find, instead of this music deafness, the word deafness mentioned just above.

The jargon talk that so often accompanies word deafness reminds us of the fact that speech is first of all auditory to the child. He understands what is said to him before he talks himself, and his vocabulary for purposes of understanding always remains ahead of his speaking vocabulary. It appears that this precedence of auditory speech over motor remains the fact throughout life, in most persons, and that the auditory speech center is the most fundamental of all the speech centers, of which there is one more not yet mentioned, used in reading.

{61}

[Ill.u.s.tration: Fig. 17.--(From Cajal.) Magnified sections through the cortex, to show the complexity of its inner structure. One view shows nerve cells and their dendrites, with only a few axons, while the other shows axons, outgoing and incoming, and some of their fine branches. Imagine one view superimposed upon the other, and you get some idea of the intricate interweaving of axons and dendrites that occurs in the cortex.]

{62}

The Visual Centers

There is a visual-sensory area in the occipital lobe, at the back of the brain, that is connected with the eye in the same way as the auditory center is connected with the ear. Without it, the individual still shows the pupillary reflex to light, but has no sensations of sight. He is blind.

[Ill.u.s.tration: Fig. 18.--Vertical cross-section through the brain, showing the cortex on the outside, the thalamus and other interior ma.s.ses of gray matter, some of the paths to and from the cortex, and the callosum or bridge of axons connecting the two cerebral hemispheres. The "Motor path" is the pyramidal tract, only the beginning of which is shown here, its further course being indicated in Fig. 14. (Figure text: tactile path, motor path, auditory path, callosum, thalamus, olfactory area)]

This visual-sensory area occupies only a small portion of the occipital lobe, and yet practically the whole lobe is concerned with vision. Some portions of the lobe are concerned in perceiving words in reading, and without them the individual is "word blind". Other portions are concerned in perceiving (recognizing, understanding) seen objects, and without them the individual is "object blind". Other {63} portions are concerned in perceiving color relations, and still other portions in perceiving spatial relations through the sense of sight and so knowing where seen objects are and being able to guide one's movements by sight.

Cortical Centers for the Other Senses

There is an olfactory area in a rather secluded part of the cortex, and this is related to the sense of smell in the same general way.

Probably there is a similar taste center, but it has not been definitely located. Then there is a large and important area called the "somesthetic", connected with the body senses generally, i.e., chiefly with the skin and muscle senses. This area is located in a narrow strip just back of the central fissure, extending parallel to the motor area which lies just in front of the fissure, and corresponding part for part with it, so that the sensory area for the legs lies just behind the motor area for the legs, and so on.

Destruction of any part of this somesthetic area brings loss of the sensations from the corresponding part of the body.

Just behind this direct sensory center for the body, in the parietal lobe, are portions of the cortex concerned in perceiving facts by aid of the body senses. Perception of size and shape by the sense of touch, perception of weight by the muscle sense, perception of degrees of warmth and cold by the temperature sense, are dependent on the parietal lobe and disappear when the cortex of this region is destroyed. It appears that there is a sort of hierarchy of centers here, as in the motor region and probably also in the visual and auditory regions. Skill in handling objects is partly dependent on the "feel" of the objects and so is impaired by injuries to the parietal lobe, as well as by injury to the frontal lobe; and knowing how to manage a fairly complex situation, as in lighting a fire when you have the various {64} materials a.s.sembled before you, seems also to depend largely on this part of the cortex.

Lower Sensory Centers

[Ill.u.s.tration: Fig. 19.--Sensory path from the skin of any portion of the trunk or limbs. The path consists of three neurones, the cell body of the first lying just outside the spinal cord, that of the second lying in the cord, and that of the third lying in the thalamus. The last part of this path is the "Tactile path," shown in Fig. 18.

(Figure text: cortex, thalamus, cord, skin)]

As already indicated, no portion of the cortex, not even the sensory areas, is directly connected with any sense organ. The sensory axons from the skin, for example, terminate in the spinal cord, in what may be called the lowest sensory centers. Here are nerve cells whose axons pa.s.s up through the cord and brain stem to the thalamus or interbrain, where they terminate in a second sensory center. And cells here send their axons up to the somesthetic area of the cortex.

{65}

The thalamus is remarkable as an intermediate center for all the senses, except smell; but exactly what is accomplished by this big intermediate sensory center remains rather a mystery, though it certainly appears that the thalamus has something to do with feeling and emotion.

The Cerebellum

Regarding the cerebellum, there is much knowledge at hand, but it is difficult to give the gist of it in a few words. On the one hand, the cerebellum receives a vast number of axons from the lower sensory centers; while, on the other hand, it certainly has nothing to do with conscious sensation or perception. Its use seems to be motor. It has much to do with maintaining the equilibrium of the body, and probably also with maintaining the steadiness and general efficiency of muscular contraction. Though it has no known sensory or intellectual functions, it is very closely connected with the cerebrum, receiving a tremendous bundle of axons from different parts of the cerebrum, by way of the brain stem. Possibly these are related to motor activity.

The phrenologists taught that the cerebellum was the center for the s.e.xual instinct, but there is no evidence in favor of this guess.

Different Levels of Reaction

Let a noise strike the ear and start nerve currents in along the auditory nerve, pa.s.sing through the lowest and intermediate centers and reaching the auditory-sensory area of the cortex. When this last is aroused to activity, we have a sensation of sound, which is the first conscious reaction to the external stimulus. Axons running from the auditory-sensory to the near-by cortex give a perception of some fact indicated by the external stimulus, and this perception is a {66} second and higher conscious reaction, which, to be sure, ordinarily occurs so quickly after the first that introspection cannot distinguish one as first and the other as second; but the facts of brain injury, already mentioned, enable us to draw the distinction.

The perceived fact may call up a mental image, or a recognition of some further fact less directly signified by the noise; these would be reactions of still higher order. Much of the cortex is apparently not very directly connected with either the sensory or the motor areas, and probably is concerned somehow in the recognition of facts that are only very indirectly indicated by any single sensory stimulus, or with the planning of actions that only indirectly issue in muscular movement.

On the sensory and intellectual side, the higher reactions follow the lower: sensation arouses perception and perception thought. On the motor side, the lower reactions are aroused by the higher. Thus the speech center arouses the motor centers for the speech organs, combining the action of these into the speaking of a word; and in a similar way, it seems, the intention to speak a sentence expressing a certain meaning acts as a stimulus to call up in order the separate words that make the sentence. A general plan of action precedes and arouses the particular acts and muscular movements that execute the plan.

{67}

EXERCISES

1. Outline of the chapter. Fill in sub-topics under each of the following heads:

A. Mental processes of all kinds are reactions.

B. The stimulus that directly arouses a mental process is often "central".

C. Brain activities of all sorts influence the muscles by way of the motor area and the lower motor centers.

D. Brain action in skilled movement.

E. Brain action in speech.

F. Brain action in sensation.

G. Brain action in recognizing seen or heard objects.

H. Relations of reactions of different levels.

2. Define and ill.u.s.trate these cla.s.ses of stimuli:

A. Peripheral:

(1) External.

(2) Internal.

B. Central.

3. Show by a diagram how one cortical center arouses another.

Compare the diagram in Fig. 9, p. 37.

4. Facilitation of the patellar reflex or "knee jerk". Let your subject sit with one leg hanging freely from the knee down. With the edge of your hand strike the patellar tendon just below the knee cap. (a) Compare the reflex movement so obtained with a voluntary imitation by the subject. Which is the quicker and briefer? (b) Apply a fairly strong auditory stimulus (a sudden noise) a fraction of a second before the tap on the tendon, and see whether the reflex response is reinforced, (c) Ask the subject to clench his fists or grit his teeth, and tap the tendon as he does so. Reinforcement? (d) Where is the reflex center for the patellar reflex, and whence comes the reinforcing influence?