Peat and its Uses as Fertilizer and Fuel - Part 5
Library

Part 5

It is a fact, however, that two manures may reveal to the chemist the same composition, and yet be very unlike in their fertilizing effects, because their conditions are unlike, because they differ in their degrees of solubility or availability.

As before insisted upon, it is true in general, that peat is more slow of decomposition than yard-manure, and this fact, which is an advantage in an amendment, is a disadvantage in a fertilizer. Though there may be some peats, or rather swamp mucks, which are energetic and rapid in their action, it seems that they need to be applied in larger quant.i.ties than stable manure in order to produce corresponding fertilizing effects. In many cases peat requires some preparation by weathering, or by chemical action--"fermentation"--induced by decomposing animal matters or by alkalies. This topic will shortly be discussed.

We adopt, as a general fact, the conclusion that peat is inferior in fertilizing power to stable manure.

Experience a.s.serts, however, with regard to some individual kinds, that they are equal to common yard manure without any preparation whatever.

Mr. Daniel Buck, of Poquonock, Conn., says, of the 'muck,' over-lying the peat, whose composition has just been compared with stable manure, that it "has been applied fresh to meadow with good results; the gra.s.s is not as tall but thicker and finer, and of a darker green in the spring, than when barn-yard manure is spread on."

A swamp muck, from Mr. A. M. Haling, Rockville, Conn., "has been used as a top-dressing, on gra.s.s, with excellent results. It is a good subst.i.tute for barn-yard manure."

A peat, from Mr. Russell U. Peck, of Berlin, Conn., "has been used fresh, on corn and meadow, with good effect."

Of the peat, from the 'Beaver Pond,' near New Haven, Mr. Chauncey Goodyear, says, "it has been largely used in a fresh state, and in this condition is as good as cow dung."

Mr. Henry Keeler, remarks, concerning a swamp muck occurring at South Salem, N. Y., that "it has been used in the fresh state, applied to corn and potatoes, and appears to be equal to good barn manure:"

further:--"it has rarely been weathered more than two months, and then applied side by side with the best yard manure has given equally good results."

A few words as to the apparent contradiction between Chemistry, which says that peat is not equal to stable dung as a fertilizer, and Practice, which in these cases affirms that it is equal to our standard manure.

In the first place, the chemical conclusion is a general one, and does not apply to individual peats, which, in a few instances, may be superior to yard manure. The practical judgment also is, that, in general, yard manure is the best.

To go to the individual cases; second: A peat in which nitrogen exists in as large a proportion as is found in stable or yard manure, being used in larger quant.i.ty, or being more durable in its action, may for a few seasons produce better results than the latter, merely on account of the presence of this one ingredient, it may in fact, for the soil and crop to which it is applied, be a better fertilizer than yard manure, because nitrogen is most needed in that soil, and yet for the generality of soils, or in the long run, it may prove to be an inferior fertilizer.

Again; third--the melioration of the physical qualities of a soil, the amendment of its dryness and excessive porosity, by means of peat, may be more effective for agricultural purposes, than the application of tenfold as much fertilizing, _i. e._ plant-feeding materials; in the same way that the mere draining of an over-moist soil often makes it more productive than the heaviest manuring.

2.--_On the characters of Peat that are detrimental, or that may sometimes need correction before it is agriculturally useful._

I.--_Bad effects on wet heavy soils._

We have laid much stress on the amending qualities of peat, when applied to dry and leachy soils, which by its use are rendered more retentive of moisture and manure. These properties, which it would seem, are just adapted to renovate very light land, under certain circ.u.mstances, may become disadvantageous on heavier soils. On clays no application is needed to retain moisture. They are already too wet as a general thing.

Peat, when put into the soil, lasts much longer than stubble, or green crops plowed in, or than long manure. If buried too deeply, or put into a heavy soil, especially if in large quant.i.ty, it does not decay, but remains wet, and tends to make a bog of the field itself.

For soils that are rather heavy, it is therefore best to compost the peat with some rapidly fermenting manure. We thus get a compound which is quicker than muck, and slower than stable manure, etc., and is therefore better adapted to the wants of the soil than either of these would be alone.

Here it will be seen that much depends on the character of the peat itself. If light and spongy, and easily dried, it may be used alone with advantage on loamy soils, whereas if dense, and coherent, it would most likely be a poor amendment on a soil which has much tendency to become compact, and therefore does not readily free itself from excess of water.

But even a clay soil, if _thorough-drained and deeply plowed_, may be wonderfully improved by even a heavy dressing of muck, as then, the water being let off, the muck can exert no detrimental action; but operates as effectually to loosen a too heavy soil, as in case of sand, it makes an over-porous soil compact or retentive. A clay may be made friable, if well drained, by incorporating with it any substance as lime, sand, long manure or muck, which interposing between the clayey particles, prevents their adhering together.

II.--_Noxious ingredients._

a. _Vitriol peat._ Occasionally a peat is met with which is injurious if applied in the fresh state to crops, from its containing some substance which exerts a poisonous action on vegetation. The princ.i.p.al detrimental ingredients that occur in peat, appear to be sulphate of protoxide of iron,--the same body that is popularly known under the names copperas and green-vitriol,--and sulphate of alumina, the astringent component of alum.

I have found these substances ready formed in large quant.i.ty in but one of the peats that I have examined, viz.: that sent me by Mr. Perrin Scarborough; of Brooklyn, Conn. This peat dissolved in water to the extent of 15 _per cent._, and the soluble portion, although containing some organic matter and sulphate of lime, consisted in great part of green-vitriol.

Portions of this muck, when thrown up to the air, become covered with "a white crust, having the taste of alum or saltpeter."

The bed containing this peat, though drained, yields but a little poor bog hay, and the peat itself, even after weathering for a year, when applied, mixed with one-fifth of stable manure to corn in the hill, gave no encouraging results, though a fair crop was obtained. It is probable that the sample a.n.a.lyzed was much richer in salts of iron and alumina, than the average of the muck.

Green-vitriol in minute doses is not hurtful, but rather beneficial to vegetation; but in larger quant.i.ty it is fatally destructive.

In a salt-marsh mud sent me by the Rev. Wm. Clift, of Stonington, Conn., there was found sulphate of iron in considerable quant.i.ty.

This noxious substance likewise occurred in small amount in swamp muck from E. Hoyt, Esq., New Canaan, Conn., and in hardly appreciable quant.i.ty in several others that I have examined. Besides green-vitriol, it is possible that certain organic salts of iron, may be deleterious.

The poisonous properties of vitriol-peats may be effectually corrected by composting with lime, or wood-ashes. By the action of these substances, sulphate of lime, (plaster of Paris) is formed, while the iron separates as peroxide, which, being insoluble, is without deleterious effect on vegetation. Where only soluble organic salts of iron (crenate of iron) are present, simple exposure to the air suffices to render them innocuous.

b. _The acidity of Peats._--Many writers have a.s.serted that peat and muck possess a hurtful "acidity" which must be corrected before they can be usefully employed. It is indeed a fact, that peat consists largely of acids, but, except perhaps in the vitriol-peats, (those containing copperas,) they are so insoluble, or if soluble, are so quickly modified by the absorption of oxygen, that they do not exhibit any "acidity" that can be deleterious to vegetation. It is advised to neutralize this supposed acidity by lime or an alkali before using peat as a fertilizer or amendment, and there is great use in such mixtures of peat with alkaline matters, as we shall presently notice under the head of composts.

By the word acidity is conveyed the idea of something hurtful to plants.

This something is, doubtless, in many cases, the salts of iron we have just noticed. In others, it is simply the inertness, "coldness" of the peat, which is not positively injurious, but is, for a time at least, of no benefit to the soil.

c. _Resinous matters_ are mentioned by various writers as injurious ingredients of peat, but I find no evidence that this notion is well-founded. The peat or muck formed from the decay of resinous wood and leaves does not appear to be injurious, and the amount of resin in peat is exceedingly small.

3.--_The Preparation of Peat for Agricultural use._

a. _Excavation._--As to the time and manner of getting out peat, the circ.u.mstances of each case must determine. I only venture here to offer a few hints on this subject, which belongs so exclusively to the farm.

The month of August is generally the appropriate time for throwing up peat, as then the swamps are usually most free from water, and most accessible to men and teams; but peat is often dug to best advantage in the winter, not only on account of the cheapness of labor, and from there being less hurry with other matters on the farm at that season, but also, because the freezing and thawing of the peat that is thrown out, greatly aid to disintegrate it and prepare it for use.

A correspondent of The _Homestead_, signing himself "Commentator," has given directions for getting out peat that are well worth the attention of farmers. He says:--

"The composting of muck and peat, with our stable and barn-yard manures, is surely destined to become one of the most important items in farm management throughout all the older States at least. One of the difficulties which lie in the way, is the first removal of the muck from its low and generally watery bed; to facilitate this, in many locations, it is less expensive to dry it before carting, by beginning an excavation at the border of the marsh in autumn, sufficiently wide for a cart path, throwing the muck out upon the surface on each side, and on a floor of boards or planks, to prevent it from absorbing moisture from the wet ground beneath; this broad ditch to be carried a sufficient length and depth to obtain the requisite quant.i.ty of muck. Thus thrown out, the two piles are now in a convenient form to be covered with boards, and, if properly done, the muck kept covered till the succeeding autumn, will be found to be dry and light, and in some cases may be carted away on the surface, or it may be best to let it remain a few months longer until the bottom of the ditch has become sufficiently frozen to bear a team; it can then be more easily loaded upon a sled or sleigh, and drawn to the yards and barn. In other localities, and where large quant.i.ties are wanted, and it lies deep, a sort of wooden railroad and inclined plane can be constructed by means of a plank track for the wheels of the cart to run upon, the team walking between these planks, and if the vehicle is inclined to 'run off the track,' it may usually be prevented by scantlings, say four inches thick, nailed upon one of the tracks on each side of the place where the wheel should run.

Two or more teams and carts may now be employed, returning into the excavation outside of this track. As the work progresses, the track can be extended at both ends, and by continuing or increasing the inclination at the upper end, a large and high pile may be made, and if kept dry, will answer for years for composting, and can be easily drawn to the barn at any time."

b. _Exposure, weathering, or seasoning of peat._--In some cases, the chief or only use of exposing the thrown-up peat to the action of the air and weather during several months or a whole year, is to rid it of the great amount of water which adheres to it, and thus reduce its bulk and weight previous to cartage.

The general effect of exposure as indicated by my a.n.a.lyses, is to reduce the amount of matter soluble in water, and cause peats to approach in this respect a fertile soil, so that instead of containing 2, 4, or 6 _per cent._ of substances soluble in water, as at first, they are brought to contain but one-half these amounts, or even less. This change, however, goes on so rapidly after peat is mingled with the soil, that previous exposure on this account is rarely necessary, and most peats might be used perfectly fresh but for the difficulty often experienced, of reducing them to such a state of division as to admit of proper mixture with the soil.

The coherent peats which may be cut out in tough blocks, must be weathered, in order that the fibres of moss or gra.s.s-roots, which give them their consistency, may be decomposed or broken to an extent admitting of easy pulverization by the instruments of tillage.

The subjection of fresh and wet peat to frost, speedily destroys its coherence and reduces it to the proper state of pulverization. For this reason, fibrous peat should be exposed when wet to winter weather.

Another advantage of exposure is, to bring the peat into a state of more active chemical change. Peat, of the deeper denser sorts, is generally too inert ("sour," cold) to be directly useful to the plant. By exposure to the air it appears gradually to acquire the properties of the humus of the soil, or of stable manure, which are vegetable matters, altered by the same exposure. It appears to become more readily oxidable, more active, chemically, and thus more capable of exciting or rather aiding vegetable growth, which, so far as the soil is concerned, is the result of chemical activities.

Account has been already given of certain peats, which, used fresh, are accounted equal or nearly equal to stable manure. Others have come under the writer's notice, which have had little immediate effect when used before seasoning.

Mr. J. H. Stanwood says of a peat, from Colebrook, Conn., that it "has been used to some extent as a top-dressing for gra.s.s and other crops with satisfactory results, _although no particular benefit was noticeable during the first year_. After that, the effects might be seen for a number of years."

Rev. Wm. Clift observes, concerning a salt peat, from Stonington, Conn.:--"It has not been used fresh; is too acid; even potatoes do not yield well _in it the first season_, without manure."

The nature of the chemical changes induced by weathering, is to some extent understood so far as the nitrogen, the most important fertilizing element, is concerned. The nitrogen of peat, as we have seen, is mostly inert, a small portion of it only, existing in a soluble or available form. By weathering, portions of this nitrogen become converted into nitric acid. This action goes on at the surface of the heap, where it is most fully exposed to the air. Below, where the peat is more moist, ammonia is formed, perhaps simply by the reduction of nitric acid--not unlikely also, by the transformation of inert nitrogen. On referring to the a.n.a.lyses given on page 44, it is seen, that the first two samples contain but little ammonia and no nitric acid. Though it is not stated what was the condition of these peats, it is probable they had not been weathered. The other four samples were weathered, and the weathering had been the more effectual from the large admixture of sand with them. They yielded to the a.n.a.lyst very considerable quant.i.ties of ammonia and nitrates.

When a peat contains sulphate of protoxide of iron, or soluble organic salts of iron, to an injurious extent, these may be converted into other insoluble and innocuous bodies, by a sufficient exposure to the air.

Sulphate of protoxide of iron is thus changed into sulphate of peroxide of iron, which is insoluble, and can therefore exert no hurtful effect on vegetation, while the soluble organic bodies of peat are oxydized and either converted into carbonic acid gas, carbonate of ammonia and water, or else made insoluble.

It is not probable, however, that merely throwing up a well characterized vitriol-peat into heaps, and exposing it thus imperfectly to the atmosphere, is sufficient to correct its bad qualities. Such peats need the addition of some alkaline body, as ammonia, lime, or potash, to render them salutary fertilizers.