On The Magnet, Magnetick Bodies Also, And On The Great Magnet The Earth - On the magnet, magnetick bodies also, and on the great magnet the earth Part 7
Library

On the magnet, magnetick bodies also, and on the great magnet the earth Part 7

CHAP. VII.

On the Potency of the Magnetick Virtue, and on its nature capable of spreading out into an orbe.

From about a magnetical body the virtue magnetical is poured out on every side around in an orbe; around a terrella; in the case of other shapes of stones, more confusedly and unevenly. But yet there exists in nature no orbe or permanent or essential virtue spread through the air, but a magnet {77} only excites magneticks at a convenient distance from it. And as light comes in an instant (as the opticians teach), so much more[165] quickly is the magnetick vigour present within the limits of its strength; and because its activity is much more subtile than light, and does not consent with a non-magnetick substance, it has no intercourse with air, water, or any non-magnetick; nor does it move a magnetick with any motion by forces rushing upon it, but being present in an instant, it invites friendly bodies. And as light strikes an object, so a loadstone strikes a magnetick body and excites it. And just as light does not remain in the air above vapours and effluvia, and is not reflected from those spaces, so neither is the magnetick ray held in air or water. The appearances of things are apprehended in an instant in mirrors and in the eye by means of light; so the magnetick virtue seizes upon magneticks. Without the more intangible and shining bodies, the appearances of things are not seized or reflected; so without magnetical objects the magnetick power is not perceived, nor are the forces thus conceived sent back again to the magnetick substance. In this, however, the magnetick power excels light, in that it is not hindered by any opaque or solid substance, but proceeds freely, and extends its forces on every side. In a terrella and globe-shaped loadstone the magnetick power is extended outside the body in an orbe; in a longer one, however, not in an orbe, but it is extended in an ambit conformably to the shape of the stone. As in the somewhat long stone A, the vigour is extended to the ambient limit F C D, equidistant on every side from the stone A.

[Illustration]

{78} CHAP. VIII.

On the geography of the Earth, _and of the Terrella_.

Desiring that what follows may be better understood, we must now say something also about magnetick circles and limits. Astronomers, in order to understand and observe methodically the motion of the planets and the revolution of the heavens, and to describe with more accuracy the celestial attire of the fixed stars, settled upon certain circles and definite limits in the sky (which geographers also imitate), so that the varied face of the earth and the beauty of its districts might be delineated. But we, in a way differing from them, recognize those limits and circles, and have found very many fixed by nature, not merely conceived by the imagination, both in the earth and in our terrella. The earth they mark out[166] chiefly by means of the aequator and the poles; and those limits indeed have been arranged and marked out by nature. The meridians also indicate straight paths from pole to pole through distinct points on the aequator; by which way the magnetick virtue directs its course and moves. But the tropics and arctic circles, as also the parallels, are not natural limits placed on the earth; but all parallel circles indicate a certain agreement of the lands situated in the same latitude, or diametrically opposite. All these the Mathematicians use for convenience, painting them on globes and maps. In like manner also in a terrella all these are required; not, however, in order that its exterior appearance may be geographically delineated, since the loadstone may be perfect, even, and uniform on all sides. And there are no upper and lower parts in the earth, nor are there in a terrella; unless perchance some one considers those parts superior which are in the periphery, and those inferior which are situated more towards the centre.

{79} CHAP. IX.

On the aequinoctial Circle of the Earth _and of a Terrella_.

As conceived by astronomers the aequinoctial circle is equidistant from both poles, cutting the world in the middle, measures the motions of their _primum mobile_ or tenth sphere, and is named the zone of the _primum mobile_. It is called aequinoctial, because when the sun stands in it (which must happen twice in the year) the days are equal to the nights. That circle is also spoken of as _aequidialis_, wherefore it is called by the Greeks [Greek: isemerinos]. In like manner it is also properly called aequator, because it divides the whole frame of the earth between the poles into equal parts. So also an aequator may be rightly assigned to a terrella, by which its power is naturally divided, and by the plane of which permeating through its centre, the whole globe is divided into equal parts both in quantity and strength (as if by a transverse septum) between verticities on both sides imbued with equal vigour.

CHAP. X.

Magnetick Meridians of the Earth.

Meridians have been thought out by the geographer, by means of which he might both distinguish the longitude and measure the latitude of each region. But the magnetick meridians are infinite, running in the same direction also, through fixed and opposite limits on the aequator, and through the poles themselves. On them also the magnetick latitude is measured, and declinations are reckoned from them; and the fixed direction in them tends to the poles, unless it varies from some defect and the magnetick is disturbed from the right way. What is commonly called a magnetick meridian is not really magnetick, nor is it really a meridian, but it is understood to pass through the termini of the variation on the horizon. The variation is a depraved deviation from a meridian, nor is it fixed and constant in various places on any meridian.

{80} CHAP. XI.

Parallels.

In parallel circles the same strength and equal power are perceived everywhere, when various magneticks are placed on one and the same parallel either on the earth or on a terrella. For they are distant from the poles by equal intervals and have equal tendencies of declination, and they are attracted and held, and they come together with like forces; just as those regions which are situated under the same parallel, even if they differ in longitude, yet we say possess the same quantity of daylight and a climate equally tempered.

CHAP. XII.

The Magnetick Horizon.

Horizon is the name given to the great circle, separating the things which are seen from those which are not seen; so that a half part of the heaven always is open and easily seen by us, half is always hidden. This seems so to us on account of the great distance of the star-bearing orbe: yet the difference is as great as may arise from the ratio of the semi-diameter of the earth compared with the semi-diameter of the starry heaven, which difference is in fact not perceived by our senses. We maintain, however, that the magnetick horizon is a plane level throughout touching the earth or a terrella in the place of some one region, with which plane the semi-diameter, whether of the earth or of the terrella, produced to the place of the region, makes right angles on every side. Such a plane is to be considered in the earth itself and also in the terrella, for magnetick proofs and demonstrations. For we consider the bodies themselves only, not the general appearances of the world. Therefore not with the idea of outlook (which varies with the elevations of the lands), but taking it as a plane which makes equal angles with the perpendicular, we accept in magnetick demonstrations a sensible horizon or boundary, not that which is called by Astronomers the rational horizon.

{81} CHAP. XIII.

On the Axis and Magnetick Poles.

Let the line be called the axis which is drawn in the earth (as in a terrella) through the centre to the poles. They are called [Greek: poloi]

by the Greeks from [Greek: polein], to turn, and by the Latins they are also called _Cardines_ or _Vertices_; because the world rotates and is perpetually carried around them. We are about to show, indeed, that the earth and a terrella are turned about them by a magnetick influence. One of them in the earth, which looks towards the Cynosure, is called Boreal and Arctic; the other one, opposite to this, is called Austral and Antarctic.

Nor do these also exist on the earth or on a terrella for the sake of the turning merely; but they are also limits of direction and position, both as respects destined districts of the world, and also for correct turnings among themselves.

CHAP. XIIII.

Why at the Pole itself the Coition is stronger than in _the other parts intermediate between the aequator and the pole;_ and on the proportion of forces of the coition in _various parts of the earth and of the terrella_.

Observation has already been made that the highest power of alluring exists in the pole, and that it is weaker and more languid in the parts adjacent to the aequator. And as this is apparent in the declination, because that disponent and rotational virtue has an augmentation as one proceeds from the aequator towards the poles: so also the coition of magneticks grows increasingly fresh by the same steps, and in the same proportion. For in the parts more remote from the poles the loadstone does not draw magneticks straight down towards its own viscera; but they tend obliquely and they allure obliquely. For as the smallest chords in a circle differ from the diameter, so much do the forces of attracting differ between themselves in different parts of the terrella. {82} For since attraction is coition towards a body, but magneticks run together by their versatory tendency, it comes about that in the diameter drawn from pole to pole the body appeals directly, but in other places less directly. So the less the magnetick is turned toward the body, the less, and the more feebly, does it approach and adhaere. [Illustration] Just as if A B were the poles and a bar of iron or a magnetick fragment C is allured at the part E; yet the end laid hold of does not tend towards the centre of the loadstone, but verges obliquely towards the pole; and a chord drawn from that end obliquely as the attracted body tends is short; therefore it has less vigour and likewise less inclination. But as a greater chord proceeds from a body at F, so its action is stronger; at G still longer; longest at A, the pole (for the diameter is the longest way) to which all the parts from all sides bring assistance, in which is constituted, as it were, the citadel and tribunal of the whole province, not from any worth of its own, but because a force resides in it contributed from all the other parts, just as all the soldiers bring help to their own commander. Wherefore also a slightly longer stone attracts more than a spherical one, since the length from pole to pole is extended, even if the stones are both from the same mine and of the same weight and size. The way from pole to pole is longer in a longer stone, and the forces brought together from other parts are not so scattered as in a round magnet and terrella, and in a narrow one they agree more and are better united, and a united stronger force excels and is preeminent. A much weaker office, however, does a plane or oblong stone perform, when the length is extended according to the leading of the parallels, and the pole stops neither on the apex nor in the circle and orbe, but is spread over the flat. Wherefore also it invites a friend wretchedly, and feebly retains him, so that it is esteemed as one of an abject and contemptible class, according to its less apt and less suitable figure.

{83} CHAP. XV.

The Magnetick Virtue which is conceived in Iron is more apparent in an iron rod than in a piece of iron that _is round, square, or of other figure_.

Duly was it said before that the longer magnet attracts the greater weight of iron[167]; so also in a longish piece of iron which has been touched the magnetick force conceived is stronger when the poles exist at the ends. For the magnetick forces which are driven from the whole in every part into the poles are not scattered but united in the narrow ends. In square and other angular figures the influence is dissipated, and does not proceed in straight lines or in convenient arcs. Suppose also an iron globe have the shape of the earth, yet for the same reasons it drags magnetick substances less; wherefore a small iron sphere, when excited, draws another piece of iron more sluggishly than an excited rod of equal weight.

CHAP. XVI.

Showing that Movements take place by the Magnetical Vigour though solid bodies lie between; and on _the interposition of iron plates_.

Float a piece of iron wire on the surface of water by transfixing it through a suitable cork; or set a versatory piece of iron on a pin or in a seaman's compass (a magnet being brought near or moved about underneath), it is put into a state of motion; neither the water, nor the vessel, nor the compass-box offering resistance in any way. Thick boards do not obstruct[168], nor earthen vessels nor marble vases, nor the metals themselves; nothing is so solid as to carry away or impede the forces excepting an iron plate. Everything which is interposed (even though it is very dense) does not carry away its influence or obstruct its path, or indeed in any way hinder, diminish, or retard it. But all the force is not suppressed by an iron plate, but it is in some measure diverted aside. For when the vigour passes into the middle of an iron plate within the orbe of the magnetick virtue or placed just {84} opposite the pole of the stone, that virtue is scattered in very large measure towards its extremities; so that the edges of a small round * plate of suitable size allure iron wires on every side. This is also apparent in the case of a long iron wand, which, when it has been touched by a magnet in the middle, has a like verticity at either end. *

[Illustration]

B is a loadstone, C D a long rod magnetized in the middle A; E being the Boreal pole; C is an Austral end or pole; in like manner also the end D is another Austral pole. But observe here the exactness with which a versorium touched by a pole, when a round plate is interposed, turns towards the same pole in the same * way as before the interposition, only weaker; the plate not standing in the way, because the vigour is diverted through the edges of the small plate, and passes out of its straight course, but yet the plate retains in the middle the same verticity, when it is in the neighbourhood of that pole, and close to it; wherefore the versorium tends towards the plate, having been touched by the same pole. If a loadstone is rather weak, a versorium hardly turns when a plate is put in between; for the vigour of the rather weak loadstone, being diffused through the extremities, passes less through the * middle. But if the plate has been touched in this way by a pole in the middle and has been removed from the stone outside its orbe of virtue, then you will see the point of the same versorium tend in the contrary direction and desert the centre of the small plate, which formerly it desired; for outside the orbe of virtue it has an opposite verticity, in the vicinity the same; for in the vicinity it is, as it were, a part of the loadstone, and has the same pole.

[Illustration]