On The Magnet, Magnetick Bodies Also, And On The Great Magnet The Earth - On the magnet, magnetick bodies also, and on the great magnet the earth Part 14
Library

On the magnet, magnetick bodies also, and on the great magnet the earth Part 14

CHAP. III.

The variation in any one place _is constant_.

[Illustration]

Vnless there should be a great dissolution of a continent and a subsidence of the land such as there was of the region Atlantis of which Plato and the ancients tell, the variation will continue perpetually immutable; the arc of the variation remains the same in the same place or region, whether it be at sea or on land, as in times past a magnetick body has declined toward the East or the West. The constancy of the variation and the pointing of the versorium to a definite point on the horizon in individual regions is demonstrated by a small versorium placed over a terrella the surface of which is uneven: for it always deviates from the meridian by an equal arc.

It is also shown by the inclination of a versorium toward a second magnet; although in reality it is by the turning power of the whole, whether in the earth or in a terrella. Place upon a plane a versorium whose cusp is directed toward the north A: place beside it a loadstone, B, at such a distance that the versorium may turn aside toward B to the point C, and not beyond. Then move the needle of the versorium as often as you will (the box and the loadstone not being moved), and it will certainly always return to the point C. In the same manner, if you {160} placed the stone so that it may be truly directed toward E, the cusp always reverts to E, and not to any other point of the compass. Accordingly, from the position of the land and from the distinctive nature of the highest parts of the earth (certain terrene and more magnetick eminences of the regions prevailing), the variation indeed becomes definite in one and the same place, but diverse and unaequal from a change of place, since the true and polar direction originating in the whole terrestrial globe is diverted somewhat toward certain stronger eminences on the broken surface.

CHAP. IIII.

The arc of variation is not changed equally _in proportion to the distance of places_.

In the open sea, when a vessel is borne by a favourable wind along the same parallel, if the variation be changed by one degree in the course of one hundred miles, the next hundred miles do not therefore lessen it by another degree; for the magnetick [needle] varies erratically as respects position, form, and vigour of the land, and also because of the distance. As, for example, when a course from the Scilly Isles to Newfoundland has proceeded so far that the compass is directed to the true pole, then, as the vessel proceeds, in the first part of the course the variation increases toward the north-west[222], but rather indistinctly and with small difference: thence, after an equal distance, the arc is increased in a greater proportion until the vessel is not far from the continent: for then it varies most of all. But before it touches actual land or enters port, then at a certain distance the arc is again slightly diminished. But if the vessel in its course should decline greatly from that parallel either toward the south or the north, the magnetick [needle] will vary more or less, according to the position of the land and the latitude * of the region. For (caeteris paribus) the greater the latitude the greater the variation.

{161} CHAP. V.

An island in Ocean does not change the variation[223], as _neither do mines of loadstone_.

Islands, although they be more magnetick than the sea, yet do not change the magnetick directions or variations. For since direction is a motion derived from the power of the whole earth, not from the attraction of any hill but from the disposing and turning power of the whole; so variation (which is a perturbation of the direction) is an aberration of the real turning power arising from the great inequalities of the earth, in consequence of which it, of itself, slightly diverts movable magneticks toward those which are the largest and the more powerful. The cause now shown may suffice to explain that which some so wonder at about the Island of Elba (and although this is productive of loadstone, yet the versorium (or mariners' compass) makes no special inclination toward it whenever vessels approach it in the Tyrrhenian sea); and the following causes are also to be considered, viz.: that the virtue of smaller magnetick bodies extends scarcely or not at all of itself beyond their own mines: for variation does not occur because of attraction, as they would have it who have imagined magnetick poles. Besides, magnetick mines are only agnate to the true earth, not innate: hence the whole globe does not regard them, and magneticks are not borne to them, as is demonstrated by the diagram of eminences.

CHAP. VI.

That variation and direction arise from the disponent _power of the earth, and from the natural magnetick tendency_ to rotation, not from attraction, or from coition, _or from other occult cause_.

Owing to the loadstone being supposed (amongst the crowd of philosophizers) to seize and drag, as it were, magnetick bodies; and since, in truth, sciolists have remarked no other forces than those so oft besung of attractive ones, they therefore deem every motion toward the north and south to be caused by some alluring and inviting quality. But the Englishman, {162} Robert Norman, first strove to show that it is not caused by attraction: wherefore, as if tending toward hidden principles, he imagined a _point respective_[224], toward which the iron touched by a loadstone would ever turn, not a _point attractive_; but in this he erred greatly, although he effaced the former error about attraction. He, however, demonstrates his opinion in this way:

[Illustration]

Let there be a round vessel filled with water: in the middle of the surface of the water place a slender iron wire on a perfectly round cork, so that it may just float in aequilibrium on the water; let the wire be previously touched by a magnet, so that it may more readily show the point of variation, the point D as it were: and let it remain on the surface for some time. It is demonstrable that the wire together with the cork is not moved to the side D of the vessel: which it would do if an attraction came to the iron wire by D: and the cork would be moved out of its place. This assertion of the Englishman, Robert Norman, is plausible and appears to do away with attraction because the iron remains on the water not moving about, as well in a direction toward the pole itself (if the direction be true) as in a variation or altered direction; and it is moved about its own centre without any transference to the edge of the vessel. But direction does not arise from attraction, but from the disposing and turning power which exists in the whole earth, not in the pole or in some other attracting part of the stone, or in any mass rising above the periphery of the true circle so that a [Illustration] variation should occur because of the attraction of that mass. Moreover, it is the directing power of the loadstone and iron and its natural power of turning around the centre which cause the motion of direction, and of conformation, in which is included also the motion of the dip. And the terrestrial pole does not attract as if the terrene force were implanted only in the pole, for the magnetick force exists in the whole, although it predominates and excels at the pole.

Wherefore that the cork should rest quiescent in the middle and that the iron excited by a loadstone should not be moved toward the side of the vessel are agreeable to and in conformity {163} with the magnetick nature, as is demonstrated by a terrella: for an iron spike placed on the stone at C clings on at C, and is not pulled * further away by the pole A, or by the parts near the pole: hence it persists at D, and takes a direction toward the pole A; nevertheless it clings on at D and dips also at D in virtue of that turning power by which it conforms itself to the terrella: of which we will say more in the part _On Declination_.

CHAP. VII.

Why the variation from that lateral cause is not _greater than has hitherto been observed, having been_ rarely seen to reach two points of the mariners'

_compass, except near the pole_.

The earth, by reason of lateral eminences of the stronger globe, diverts iron and loadstone by some degrees from the true pole, or true meridian.

As, for example, with us English at London it varies eleven degrees and 1/3: in some other places the variation is a little greater, but in no other region is the end of the iron ever moved aside very much more from the meridian. For as the iron is always directed by the true verticity of the earth, so the polar nature of the continent land (just as of the whole terrene globe) acts toward the poles: and even if that mass divert magnetick bodies from the meridian, yet the verticity of those lands (as also of the whole earth) controls and disposes them so that they do not turn toward the East by any greater arc. But it is not easy to determine by any general method how great the arc of variation is in all places, and how many degrees and minutes it subtends on the horizon, since it becomes greater or less {164} from diverse causes. For both the strength of true verticity of the place and of the elevated regions, as well as their distances from the given place and from the poles of the world, must be considered and compared; which indeed cannot be done exactly: nevertheless by our method the variation becomes so known that no grave error will perturb the course at sea. If the positions of the lands were uniform and straight along meridians, and not defective and rugged, the variations near lands would be simple; such as appear in the following figure.

[Illustration]

This is demonstrated by a long loadstone the poles of which are in the ends A B; let C D be the middle line and the aequinoctial, and let G H and E F (the lines) be for meridians on which versoria are disposed, the variations of which are greater at a greater distance from the aequator. But the inequalities of the maritime parts of the habitable earth, the enormous promontories, the very wide gulfs, the mountainous and more elevated regions, render the variations more unequal, or sudden, or more obscure; and, moreover, less certain and more inconstant in the higher latitude.

{165} CHAP. VIII.

On the construction of the common mariners'

compass[225], and on the diversity of the compasses _of different nations_.

In a round[226] hollow wooden bowl, all the upper part of which is closed with glass, a versorium is placed upon a rather long pin which is fixed in the middle. The covering prevents the wind, and the motion of air from any external cause. Through the glass everything within can be discerned. The versorium is circular, consisting of some light material (as card), to the under part of which the magnetick pieces of iron are attached. On the upper part 32 spaces (which are commonly called _points_) are assigned to the same number of mathematical intervals in the horizon or winds which are distinguished by certain marks and by a lily indicating the north. The bowl is suspended in the plane of the horizon in aequilibrium in a brass ring which also is itself suspended transversely in another ring within a box sufficiently wide with a leaden weight attached; hence it conforms to the plane of the horizon even though the ship be tossed to and fro by the waves. The iron works are either a pair with their ends united, or else a single one of a nearly oval shape with projecting ends, which does its work more certainly and more quickly. This is to be fitted to the cardboard circle so that the centre of the circle may be in the middle of the magnetick iron. But inasmuch as variation arises horizontally from the point of the meridian which cuts the horizon at right angles, therefore on account of the variation the makers in different regions and cities mark out the mariners' compass in different ways, and also attach in different ways the magnetick needles to the cardboard circle on which are placed the 32 divisions or points. Hence there are commonly in Europe 4 different constructions and forms. First that of the States on the Mediterranean Sea, Sicily, Genoa, and the Republick of Venice. In all these the needles are attached under the rose or lily on the cardboard versorium, so that (where there is no variation) they are directed to the true north and south points. Wherefore the north part marked with the lily always shows exactly the point of variation when the apex itself of the lily on the movable circle, together with the ends of the magnetick wires attached below, rests at the point of variation. Yet another is that of Dantzig, and throughout the Baltic Sea, and the Belgian provinces; {166} in which the iron works fixed below the circle diverge from the lily of a rumbe to the east. For navigation to Russia the divergency is 2/3. But the compasses which are made at Seville, Lisbon, Rochelle, Bordeaux, Rouen, and throughout all England have an interval of a rumbe. From those differences most serious errors have arisen in navigation, and in the marine science. For as soon as the bearings of maritime places (such as promontories, havens, islands) have been first found by the aid of the mariners' compass, and the times of sea-tide or high water determined from the position of the moon over this or that point (as they say) of the compass, it must be further inquired in what region or according to the custom of what region that compass was made by which the bearings of those places and the times of the sea-tides were first observed and discovered. For one who should use the British compass and should follow the directions of the marine charts of the Mediterranean Sea would necessarily wander very much out of the straight course. So also he that should use the Italian compass in the British, German, or Baltic Sea, together with marine charts that are made use of in those parts, will often stray from the right way. These different constructions have been made on account of the dissimilar variations, so that they might avoid somewhat serious errors in those parts of the world. But Pedro Nunez seeks the meridian by the mariners' compass, or versorium (which the Spanish call the needle), without taking account of the variation: and he adduces many geometrical demonstrations which (because of his slight use and experience in matters magnetical) rest on utterly vicious foundations. In the same manner Pedro de Medina, since he did not admit variation, has disfigured his _Arte de Navegar_ with many errors.

CHAP. IX.

Whether the terrestrial longitude can be found from _the variation_.

Grateful would be this work to seamen, and would bring the greatest advance to Geography. But B. Porta in chap. 38 of book 7 is mocked by a vain hope and fruitless opinion. For when he supposes that the magnetick needle would follow order and proportion in moving along meridians, so that "the neerer it is to the east, the more it will decline from the Meridian line, toward the east; and the neerer it comes to the west, the {167} point of the needle will decline the more to the west" (which is totally untrue), he thinks that he has discovered a true index of longitude. But he is mistaken. Nevertheless, admitting and assuming these things (as though they were perfectly true), he makes a large compass indicating degrees and minutes, by which these proportional changes of the versorium might be observed. But those very principles are false, and ill conceived, and very ill considered; for the versorium does not turn more to the east because a journey is made toward the east: and although the variation in the more westerly parts of Europe and the adjoining ocean is to the east and beyond the Azores is changed a little to the west, yet the variation is, in various ways, always uncertain, both on account of longitude and of latitude, and because of the approach toward extensive tracts of land, and also because of the form of the dominant terrestrial eminences; nor does it, as we have before demonstrated, follow the rule of any particular meridian. It is with the same vanity also that Livio Sanuto so greatly torments himself and his readers. As for the fact that the crowd of philosophizers and sailors suppose that the meridian passing through the Azores marks the limits of variation, so that on the other and opposite side of that meridian a magnetick body necessarily respects the poles exactly, which is also the opinion of Joannes Baptista Benedictus and of many other writers on navigation, it is by no means true. Stevinus (on the authority of Hugo Grotius) in his _Havenfinding Art_ distinguishes the variation according to the meridians: "It may be seene in the Table of variations, that in _Coruo_ the Magneticall needle pointeth due North: but after that, the more a man shal goe towards the East, so much the more also shall he see the needle varie towards the East [[Greek: anatolizein]], till he come one mile to the Eastward from _Plimouth_, where the variation comming to the greatest is 13 degr. 24 min. From hence the Northeasting [Anatolismus] beginneth to decrease, til you come to _Helmshude_ (which place is Westward from the North Cape of Finmark) where againe the needle pointeth due North. Now the longitude from _Coruo_ to _Helmshude_ is 60 degr. Which things being well weighed, it appeareth that the greatest variation [Chalyboclysis] 13 degr. 24 minutes at _Plimmouth_ (the longitude whereof is 30 degr.) is in the midst betweene the places where the needle pointeth due North." But although this is in some part true in these places, yet it is by no means true that along the whole of the meridian of the island of Corvo the versorium looks truly to the north; nor on the meridian of Plymouth is the variation in other places 13 deg. 24 min.--nor again in other parts of the meridian of Helmshuda does it point to the true pole. For on the meridian passing through Plymouth in Latitude 60 degrees the North-easterly variation is greater: in Latitude 40 deg. much less; in Latitude 20 deg. very small indeed. On the meridian of Corvo, although there is no variation near the {168} island, yet in Latitude 55 degrees the variation is about a rumbe to the North-west; in Latitude 20 deg. the versorium inclines of a rumbe toward the East. Consequently the limits of variation are not conveniently determined by means of great circles and meridians, and much less are the ratios of the increment or decrement toward any part of the heavens properly investigated by them. Wherefore the rules of the abatement or augmentation of Northeasting or Northwesting, or of increasing or decreasing the magnetick deviation, can by no means be discovered by such an artifice. The rules which follow later for variation in southern parts of the earth investigated by the same method are altogether vain and absurd. They were put forth by certain Portuguese mariners, but they do not agree with the observations, and the observations themselves are admitted to be bad. But the method of haven-finding in long and distant voyages by carefully observed variation (such as was invented by Stevinus, and mentioned by Grotius) is of great moment, if only proper instruments are in readiness, by which the magnetick deviation can be ascertained with certainty at sea.

CHAP. X.

Why in various places near the pole the variations are much more ample than in a _lower latitude_.

Variations are often slight, and generally null, when the versorium is at or near the earth's aequator. In a higher Latitude of 60, 70 or 80 deg.

there are not seldom very wide variations. The cause of this is to be sought partly from the nature of the earth and partly from the disposition of the versorium. The earth turns magnetick bodies and at the aequator directs them strongly toward the pole: [227]at the poles there is no direction, but only a strong coition through the congruent poles. Direction is therefore weaker near the poles, because by reason of its own natural tendency to turn, the versorium dips very much, and is not strongly directed. But since the force of those elevated lands is more vigorous, for the virtue flows from the whole globe, and since also the causes of variation are nearer, therefore the versorium deflects the more from its true direction toward those eminences. It must also be known that the direction of the versorium on its pin along the plane of the Horizon is much stronger at the aequator than anywhere else by reason of the disposition of the {169} versorium; and this direction falls off with an increase of latitude. For on the aequator the versorium is, following its natural property, directed along the plane of the horizon; but in other places it is, contrary to its natural property, compelled into aequilibrium, and remains there, compelled by some external force: because it would, according to its natural property, dip below the horizon in proportion to the latitude, as we shall demonstrate in the book _On Declination_. Hence the direction falls off and at the pole is itself nothing: and for that reason a feebler direction is easily vanquished by the stronger causes of variation, and near the pole the versorium deflects the more from the meridian. It is demonstrated by means of a terrella: if an iron wire of two digits length be placed on its aequator, it will be strongly and rapidly directed toward the poles along the meridian, but more weakly so in the mid-intervals; while near the poles one may discern a precipitate variation.

CHAP. XI.

Cardan's error when he seeks the distance of the _centre of the earth from the centre of the cosmos by the_ motion of the stone of Hercules; in his _book 5, On Proportions_.

One may very easily fall into mistakes and errors when one is searching into the hidden causes of things, in the absence of real experiments, and this is easily apparent from the crass error of Cardan; who deems himself to have discovered the distances of the centres of the cosmos and of the earth through a variation of the magnetick iron of 9 degrees. For he reckoned that everywhere on the earth the point of variation on the Horizon is always distant nine degrees from the true north, toward the east: and from thence he forms, by a most foolish error, his demonstrative ratio of the separate centres.

{170} CHAP. XII.