Man's Place in Nature and Other Essays - Part 15
Library

Part 15

The whole surface of the earth,--I speak broadly, and leave out minor qualifications,--is made up of such layers of mud, so hard, the majority of them, that we call them rock, whether limestone or sandstone, or other varieties of rock. And, seeing that every part of the crust of the earth is made up in this way, you might think that the determination of the chronology, the fixing of the time which it has taken to form this crust is a comparatively simple matter. Take a broad average, ascertain how fast the mud is deposited upon the bottom of the sea, or in the estuary of rivers; take it to be an inch, or two, or three inches a year, or whatever you may roughly estimate it at; then take the total thickness of the whole series of stratified rocks, which geologists estimate at twelve or thirteen miles, or about seventy thousand feet, make a sum in short division, divide the total thickness by that of the quant.i.ty deposited in one year, and the result will, of course, give you the number of years which the crust has taken to form.

Truly, that looks a very simple process! It would be so except for certain difficulties, the very first of which is that of finding how rapidly sediments are deposited; but the main difficulty--a difficulty which renders any certain calculations of such a matter out of the question--is this, the sea-bottom on which the deposit takes place is continually shifting.

Instead of the surface of the earth being that stable, fixed thing that it is popularly believed to be, being, in common parlance, the very emblem of fixity itself, it is incessantly moving, and is, in fact, as unstable as the surface of the sea, except that its undulations are infinitely slower and enormously higher and deeper.

Now, what is the effect of this oscillation? Take the case to which I have previously referred. The finer or coa.r.s.er sediments that are carried down by the current of the river will only be carried out a certain distance, and eventually, as we have already seen, on reaching the stiller part of the ocean, will be deposited at the bottom.

Let C _y_ (Fig. 35) be the sea-bottom, _y_ D the sh.o.r.e, _x y_ the sea-level, then the coa.r.s.er deposit will subside over the region B, the finer over A, while beyond A there will be no deposit at all; and, consequently, no record will be kept, simply because no deposit is going on. Now, suppose that the whole land, C, D, which we have regarded as stationary, goes down, as it does so, both A and B go further out from the sh.o.r.e, which will be at _y_^1, _x_^1 _y_^1, being the new sea-level.

The consequence will be that the layer of mud (A), being now, for the most part, further than the force of the current is strong enough to convey even the finest _debris_, will, of course, receive no more deposits, and having attained a certain thickness, will now grow no thicker.

[Ill.u.s.tration: FIG. 35.]

We should be misled in taking the thickness of that layer, whenever it may be exposed to our view, as a record of time in the manner in which we are now regarding this subject, as it would give us only an imperfect and partial record: it would seem to represent too short a period of time.

Suppose, on the other hand, that the land (C D) had gone on rising slowly and gradually--say an inch or two inches in the course of a century,--what would be the practical effect of that movement? Why, that the sediment A and B which has been already deposited, would eventually be brought nearer to the sh.o.r.e-level, and again subjected to the wear and tear of the sea; and directly the sea begins to act upon it, it would of course soon cut up and carry it away, to a greater or less extent, to be re-deposited further out.

Well, as there is, in all probability, not one single spot on the whole surface of the earth, which has not been up and down in this way a great many times, it follows that the thickness of the deposits formed at any particular spot cannot be taken (even supposing we had at first obtained correct data as to the rate at which they took place) as affording reliable information as to the period of time occupied in its deposit.

So that you see it is absolutely necessary from these facts, seeing that our record entirely consists of acc.u.mulations of mud, superimposed one on the other; seeing in the next place that any particular spots on which acc.u.mulations have occurred, have been constantly moving up and down, and sometimes out of the reach of a deposit, and at other times its own deposit broken up and carried away, it follows that our record must be in the highest degree imperfect, and we have hardly a trace left of thick deposits, or any definite knowledge of the area that they occupied in a great many cases. And mark this! That supposing even that the whole surface of the earth had been accessible to the geologist,--that man had had access to every part of the earth, and had made sections of the whole, and put them all together,--even then his record must of necessity be imperfect.

But to how much has man really access? If you will look at this Map you will see that it represents the proportion of the sea to the earth: this coloured part indicates all the dry land, and this other portion is the water. You will notice at once that the water covers three-fifths of the whole surface of the globe, and has covered it in the same manner ever since man has kept any record of his own observations, to say nothing of the minute period during which he has cultivated geological inquiry. So that three-fifths of the surface of the earth is shut out from us because it is under the sea. Let us look at the other two-fifths, and see what are the countries in which anything that may be termed searching geological inquiry has been carried out: a good deal of France, Germany, and Great Britain and Ireland, bits of Spain, of Italy, and of Russia, have been examined, but of the whole great ma.s.s of Africa, except parts of the southern extremity, we know next to nothing; little bits of India, but of the greater part of the Asiatic continent nothing; bits of the Northern American States and of Canada, but of the greater part of the continent of North America, and in still larger proportion, of South America, nothing!

Under these circ.u.mstances, it follows that even with reference to that kind of imperfect information which we can possess, it is only of about the ten-thousandth part of the accessible parts of the earth that has been examined properly. Therefore, it is with justice that the most thoughtful of those who are concerned in these inquiries insist continually upon the imperfection of the geological record; for, I repeat, it is absolutely necessary, from the nature of things, that that record should be of the most fragmentary and imperfect character.

Unfortunately this circ.u.mstance has been constantly forgotten. Men of science, like young colts in a fresh pasture, are apt to be exhilarated on being turned into a new field of inquiry, to go off at a hand-gallop, in total disregard of hedges and ditches, to lose sight of the real limitation of their inquiries, and to forget the extreme imperfection of what is really known. Geologists have imagined that they could tell us what was going on at all parts of the earth's surface during a given epoch; they have talked of this deposit being contemporaneous with that deposit, until, from our little local histories of the changes at limited spots of the earth's surface, they have constructed a universal history of the globe as full of wonders and portents as any other story of antiquity.

But what does this attempt to construct a universal history of the globe imply? It implies that we shall not only have a precise knowledge of the events which have occurred at any particular point, but that we shall be able to say what events, at any one spot, took place at the same time with those at other spots.

Let us see how far that is in the nature of things practicable. Suppose that here I make a section of the Lake of Killarney, and here the section of another lake--that of Loch Lomond in Scotland for instance.

The rivers that flow into them are constantly carrying down deposits of mud, and beds, or strata, are being as constantly formed, one above the other, at the bottom of those lakes. Now, there is not a shadow of doubt that in these two lakes the lower beds are all older than the upper--there is no doubt about that; but what does _this_ tell us about the age of any given bed in Loch Lomond, as compared with that of any given bed in the Lake of Killarney? It is, indeed, obvious that if any two sets of deposits are separated and discontinuous, there is absolutely no means whatever given you by the nature of the deposit of saying whether one is much younger or older than the other; but you may say, as many have said and think, that the case is very much altered if the beds which we are comparing are continuous. Suppose two beds of mud hardened into rock,--A and B are seen in section (Fig. 36.)

[Ill.u.s.tration: FIG. 36.]

Well, you say, it is admitted that the lowermost bed is always the older. Very well; B, therefore, is older than A. No doubt, _as a whole_, it is so; or if any parts of the two beds which are in the same vertical line are compared, it is so. But suppose you take what seems a very natural step further, and say that the part _a_ of the bed A is younger than the part _b_ of the bed B. Is this sound reasoning? If you find any record of changes taking place at _b_, did they occur before any events which took place while _a_ was being deposited? It looks all very plain sailing, indeed, to say that they did; and yet there is no proof of anything of the kind. As the former Director of this Inst.i.tution, Sir H.

De la Beche, long ago showed, this reasoning may involve an entire fallacy. It is extremely possible that _a_ may have been deposited ages before _b_. It is very easy to understand how that can be. To return to Fig. 35; when A and B were deposited, they were _substantially_ contemporaneous; A being simply the finer deposit, and B the coa.r.s.er of the same detritus or waste of land. Now suppose that that sea-bottom goes down (as shown in Fig. 35), so that the first deposit is carried no farther than _a_, forming the bed A^1, and the coa.r.s.e no farther than _b_, forming the bed B^1, the result will be the formation of two continuous beds, one of fine sediment (A A^1) over-lapping another of coa.r.s.e sediment (B B^1). Now suppose the whole sea-bottom is raised up, and a section exposed about the point A^1; no doubt, _at this spot_, the upper bed is younger than the lower. But we should obviously greatly err if we concluded that the ma.s.s of the upper bed at A was younger than the lower bed at B; for we have just seen that they are contemporaneous deposits. Still more should we be in error if we supposed the upper bed at A to be younger than the continuation of the lower bed at B^1; for A was deposited long before B^1. In fine, if, instead of comparing immediately adjacent parts of two beds, one of which lies upon another, we compare distant parts, it is quite possible that the upper may be any number of years older than the under, and the under any number of years younger than the upper.

Now you must not suppose that I put this before you for the purpose of raising a paradoxical difficulty; the fact is, that the great ma.s.s of deposits have taken place in sea-bottoms which are gradually sinking, and have been formed under the very conditions I am here supposing.

Do not run away with the notion that this subverts the principle I laid down at first. The error lies in extending a principle which is perfectly applicable to deposits in the same vertical line to deposits which are not in that relation to one another.

It is in consequence of circ.u.mstances of this kind, and of others that I might mention to you, that our conclusions on and interpretations of the record are really and strictly only valid so long as we confine ourselves to one vertical section. I do not mean to tell you that there are no qualifying circ.u.mstances, so that, even in very considerable areas, we may safely speak of conformably superimposed beds being older or younger than others at many different points. But we can never be quite sure in coming to that conclusion, and especially we cannot be sure if there is any break in their continuity, or any very great distance between the points to be compared.

Well now, so much for the record itself,--so much for its imperfections,--so much for the conditions to be observed in interpreting it, and its chronological indications, the moment we pa.s.s beyond the limits of a vertical linear section.

Now let us pa.s.s from the record to that which it contains,--from the book itself to the writing and the figures on its pages. This writing and these figures consist of remains of animals and plants which, in the great majority of cases, have lived and died in the very spot in which we now find them, or at least in the immediate vicinity. You must all of you be aware--and I referred to the fact in my last lecture--that there are vast numbers of creatures living at the bottom of the sea. These creatures, like all others, sooner or later die, and their sh.e.l.ls and hard parts lie at the bottom; and then the fine mud which is being constantly brought down by rivers and the action of the wear and tear of the sea, covers them over and protects them from any further change or alteration; and, of course, as in process of time the mud becomes hardened and solidified, the sh.e.l.ls of these animals are preserved and firmly embedded in the limestone or sandstone which is being thus formed. You may see in the galleries of the Museum upstairs specimens of limestones in which such fossil remains of existing animals are embedded. There are some specimens in which turtles' eggs have been embedded in calcareous sand, and before the sun had hatched the young turtles, they became covered over with calcareous mud, and thus have been preserved and fossilized.

Not only does this process of embedding and fossilization occur with marine and other aquatic animals and plants, but it affects those land animals and plants which are drifted away to sea, or become buried in bogs or mora.s.ses; and the animals which have been trodden down by their fellows and crushed in the mud at the river's bank, as the herd have come to drink. In any of these cases, the organisms may be crushed or be mutilated, before or after putrefaction, in such a manner that perhaps only a part will be left in the form in which it reaches us. It is, indeed, a most remarkable fact, that it is quite an exceptional case to find a skeleton of any one of all the thousands of wild land animals that we know are constantly being killed, or dying in the course of nature: they are preyed on and devoured by other animals, or die in places where their bodies are not afterwards protected by mud. There are other animals existing in the sea, the sh.e.l.ls of which form exceedingly large deposits. You are probably aware that before the attempt was made to lay the Atlantic telegraphic cable, the Government employed vessels in making a series of very careful observations and soundings of the bottom of the Atlantic; and although, as we must all regret, that up to the present time that project has not succeeded, we have the satisfaction of knowing that it yielded some most remarkable results to science. The Atlantic Ocean had to be sounded right across, to depths of several miles in some places, and the nature of its bottom was carefully ascertained. Well, now, a s.p.a.ce of about 1000 miles wide from east to west, and I do not exactly know how many from north to south, but at any rate 600 or 700 miles, was carefully examined, and it was found that over the whole of that immense area an excessively fine chalky mud is being deposited; and this deposit is entirely made up of animals whose hard parts are deposited in this part of the ocean, and are doubtless gradually acquiring solidity and becoming metamorphosed into a chalky limestone. Thus, you see, it is quite possible in this way to preserve unmistakable records of animal and vegetable life. Whenever the sea-bottom, by some of those undulations of the earth's crust that I have referred to, becomes upheaved, and sections or borings are made, or pits are dug, then we become able to examine the contents and const.i.tuents of these ancient sea-bottoms, and find out what manner of animals lived at that period.

Now it is a very important consideration in its bearing on the completeness of the record, to inquire how far the remains contained in these fossiliferous limestones are able to convey anything like an accurate or complete account of the animals which were in existence at the time of its formation. Upon that point we can form a very clear judgment, and one in which there is no possible room for any mistake.

There are of course a great number of animals--such as jelly-fishes, and other animals--without any hard parts, of which we cannot reasonably expect to find any traces whatever: there is nothing of them to preserve. Within a very short time, you will have noticed, after they are removed from the water, they dry up to a mere nothing; certainly they are not of a nature to leave any very visible traces of their existence on such bodies as chalk or mud. Then again, look at land animals; it is, as I have said, a very uncommon thing to find a land animal entire after death. Insects and other carnivorous animals very speedily pull them to pieces, putrefaction takes place, and so, out of the hundreds of thousands that are known to die every year, it is the rarest thing in the world to see one embedded in such a way that its remains would be preserved for a lengthened period. Not only is this the case, but even when animal remains have been safely embedded, certain natural agents may wholly destroy and remove them.

Almost all the hard parts of animals--the bones and so on--are composed chiefly of phosphate of lime and carbonate of lime. Some years ago, I had to make an inquiry into the nature of some very curious fossils sent to me from the North of Scotland. Fossils are usually hard bony structures that have become embedded in the way I have described, and have gradually acquired the nature and solidity of the body with which they are a.s.sociated; but in this case I had a series of _holes_ in some pieces of rock, and nothing else. Those holes, however, had a certain definite shape about them, and when I got a skilful workman to make castings of the interior of these holes, I found that they were the impressions of the joints of a backbone and of the armour of a great reptile, twelve or more feet long. This great beast had died and got buried in the sand, the sand had gradually hardened over the bones, but remained porous. Water had trickled through it, and that water being probably charged with a superfluity of carbonic acid, had dissolved all the phosphate and carbonate of lime, and the bones themselves had thus decayed and entirely disappeared; but as the sandstone happened to have consolidated by that time, the precise shape of the bones was retained.

If that sandstone had remained soft a little longer, we should have known nothing whatsoever of the existence of the reptile whose bones it had encased.

How certain it is that a vast number of animals which have existed at one period on this earth have entirely perished, and left no trace whatever of their forms, may be proved to you by other considerations.

There are large tracts of sandstone in various parts of the world, in which n.o.body has yet found anything but footsteps. Not a bone of any description, but an enormous number of traces of footsteps. There is no question about them. There is a whole valley in Connecticut covered with these footsteps, and not a single fragment of the animals which made them have yet been found. Let me mention another case while upon that matter, which is even more surprising than those to which I have yet referred. There is a limestone formation near Oxford, at a place called Stonesfield, which has yielded the remains of certain very interesting mammalian animals, and up to this time, if I recollect rightly, there have been found seven specimens of its lower jaws, and not a bit of anything else, neither limb-bones nor skull, or any part whatever; not a fragment of the whole system! Of course, it would be preposterous to imagine that the beasts had nothing else but a lower jaw! The probability is, as Dr. Buckland showed, as the result of his observations on dead dogs in the river Thames, that the lower jaw, not being secured by very firm ligaments to the bones of the head, and being a weighty affair, would easily be knocked off, or might drop away from the body as it floated in water in a state of decomposition. The jaw would thus be deposited immediately, while the rest of the body would float and drift away altogether, ultimately reaching the sea, and perhaps becoming destroyed. The jaw becomes covered up and preserved in the river silt, and thus it comes that we have such a curious circ.u.mstance as that of the lower jaws in the Stonesfield slates. So that, you see, faulty as these layers of stone in the earth's crust are, defective as they necessarily are as a record, the account of contemporaneous vital phenomena presented by them is, by the necessity of the case, infinitely more defective and fragmentary.

It was necessary that I should put all this very strongly before you, because, otherwise, you might have been led to think differently of the completeness of our knowledge by the next facts I shall state to you.

The researches of the last three-quarters of a century have, in truth, revealed a wonderful richness of organic life in those rocks. Certainly not fewer than thirty or forty thousand different species of fossils have been discovered. You have no more ground for doubting that these creatures really lived and died at or near the places in which we find them than you have for like scepticism about a sh.e.l.l on the sea-sh.o.r.e.

The evidence is as good in the one case as in the other.

Our next business is to look at the general character of these fossil remains, and it is a subject which will be requisite to consider carefully; and the first point for us is to examine how much the extinct _Flora_ and _Fauna_ as a _whole_--disregarding altogether the _succession_ of their const.i.tuents, of which I shall speak afterwards--differ from the _Flora_ and _Fauna_ of the present day;--how far they differ in what we _do_ know about them, leaving altogether out of consideration speculations based on what we _do not_ know.

I strongly imagine that if it were not for the peculiar appearance that fossilized animals have, that any of you might readily walk through a museum which contains fossil remains mixed up with those of the present forms of life, and I doubt very much whether your uninstructed eyes would lead you to see any vast or wonderful difference between the two.

If you looked closely, you would notice, in the first place, a great many things very like animals with which you are acquainted now: you would see differences of shape and proportion, but on the whole a close similarity.

I explained what I meant by ORDERS the other day, when I described the animal kingdom as being divided into sub-kingdoms, cla.s.ses, and orders.

If you divide the animal kingdom into orders, you will find that there are above one hundred and twenty. The number may vary on one side or the other, but this is a fair estimate. That is the sum total of the orders of all the animals which we know now, and which have been known in past times, and left remains behind.

Now, how many of those are absolutely extinct? That is to say, how many of these orders of animals have lived at a former period of the world's history, but have at present no representatives? That is the sense in which I meant to use the word "extinct." I mean that those animals did live on this earth at one time, but have left no one of their kind with us at the present moment. So that estimating the number of extinct animals is a sort of way of comparing the past creation as a whole with the present as a whole. Among the mammalia and birds there are none extinct; but when we come to the reptiles there is a most wonderful thing: out of the eight orders, or thereabouts, which you can make among reptiles, one-half are extinct. These diagrams of the plesiosaurus, the ichthyosaurus, the pterodactyle, give you a notion of some of these extinct reptiles. And here is a cast of the pterodactyle and bones of the ichthyosaurus and the plesiosaurus, just as fresh as if it had been recently dug up in a churchyard. Thus, in the reptile cla.s.s, there are no less than half of the orders which are absolutely extinct. If we turn to the _Amphibia_, there was one extinct order, the Labyrinthodonts, typified by the large salamander-like beast shown in this diagram.

No order of fishes is known to be extinct. Every fish that we find in the strata--to which I have been referring--can be identified and placed in one of the orders which exist at the present day. There is not known to be a single ordinal form of insect extinct. There are only two orders extinct among the _Crustacea_. There is not known to be an extinct order of these creatures, the parasitic and other worms; but there are two, not to say three, absolutely extinct orders of this cla.s.s, the _Echinodermata_; out of all the orders of the _Coelenterata_ and _Protozoa_ only one, the Rugose Corals.

So that, you see, out of somewhere about 120 orders of animals, taking them altogether, you will not, at the outside estimate, find above ten or a dozen extinct. Summing up all the orders of animals which have left remains behind them, you will not find above ten or a dozen which cannot be arranged with those of the present day; that is to say, that the difference does not amount to much more than ten per cent.: and the proportion of extinct orders of plants is still smaller. I think that that is a very astounding, a most astonishing fact: seeing the enormous epochs of time which have elapsed during the const.i.tution of the surface of the earth as it at present exists; it is, indeed, a most astounding thing that the proportion of extinct ordinal types should be so exceedingly small.

But now, there is another point of view in which we must look at this past creation. Suppose that we were to sink a vertical pit through the floor beneath us, and that I could succeed in making a section right through in the direction of New Zealand, I should find in each of the different beds through which I pa.s.sed the remains of animals which I should find in that stratum and not in the others. First, I should come upon beds of gravel or drift containing the bones of large animals, such as the elephant, rhinoceros, and cave tiger. Rather curious things to fall across in Piccadilly! If I should dig lower still, I should come upon a bed of what we call the London clay, and in this, as you will see in our galleries upstairs, are found remains of strange cattle, remains of turtles, palms, and large tropical fruits; with sh.e.l.l-fish such as you see the like of now only in tropical regions. If I went below that, I should come upon the chalk, and there I should find something altogether different, the remains of ichthyosauri and pterodactyles, and ammonites, and so forth.

I do not know what Mr. G.o.dwin Austin would say comes next, but probably rocks containing more ammonites, and more ichthyosauri and plesiosauri, with a vast number of other things; and under that I should meet with yet older rocks, containing numbers of strange sh.e.l.ls and fishes; and in thus pa.s.sing from the surface to the lowest depths of the earth's crust, the forms of animal life and vegetable life which I should meet with in the successive beds would, looking at them broadly, be the more different the further that I went down. Or, in other words, inasmuch as we started with the clear principle, that in a series of naturally-disposed mud beds the lowest are the oldest, we should come to this result, that the farther we go back in time the more difference exists between the animal and vegetable life of an epoch and that which now exists. That was the conclusion to which I wished to bring you at the end of this Lecture.

VI

THE METHOD BY WHICH THE CAUSES OF THE PRESENT AND PAST CONDITIONS OF ORGANIC NATURE ARE TO BE DISCOVERED.--THE ORIGINATION OF LIVING BEINGS.

In the two preceding lectures I have endeavoured to indicate to you the extent of the subject-matter of the inquiry upon which we are engaged; and having thus acquired some conception of the Past and Present phenomena of Organic Nature, I must now turn to that which const.i.tutes the great problem which we have set before ourselves;--I mean, the question of what knowledge we have of the causes of these phenomena of organic nature, and how such knowledge is obtainable.

Here, on the threshold of the inquiry, an objection meets us. There are in the world a number of extremely worthy, well-meaning persons, whose judgments and opinions are ent.i.tled to the utmost respect on account of their sincerity, who are of opinion that Vital Phenomena, and especially all questions relating to the origin of vital phenomena, are questions quite apart from the ordinary run of inquiry, and are, by their very nature, placed out of our reach. They say that all these phenomena originated miraculously, or in some way totally different from the ordinary course of nature, and that therefore they conceive it to be futile, not to say presumptuous, to attempt to inquire into them.

To such sincere and earnest persons, I would only say, that a question of this kind is not to be shelved upon theoretical or speculative grounds. You may remember the story of the Sophist who demonstrated to Diogenes in the most complete and satisfactory manner that he could not walk; that, in fact, all motion was an impossibility; and that Diogenes refuted him by simply getting up and walking round his tub. So, in the same way, the man of science replies to objections of this kind, by simply getting up and walking onward, and showing what science has done and is doing,--by pointing to that immense ma.s.s of facts which have been ascertained and systematized under the forms of the great doctrines of Morphology, of Development, of Distribution, and the like. He sees an enormous ma.s.s of facts and laws relating to organic beings, which stand on the same good sound foundation as every other natural law. With this ma.s.s of facts and laws before us, therefore, seeing that, as far as organic matters have hitherto been accessible and studied, they have shown themselves capable of yielding to scientific investigation, we may accept this as proof that order and law reign there as well as in the rest of nature. The man of science says nothing to objectors of this sort, but supposes that we can and shall walk to a knowledge of the origin of organic nature, in the same way that we have walked to a knowledge of the laws and principles of the inorganic world.

But there are objectors who say the same from ignorance and ill-will. To such I would reply that the objection comes ill from them, and that the real presumption, I may almost say the real blasphemy, in this matter, is in the attempt to limit that inquiry into the causes of phenomena, which is the source of all human blessings, and from which has sprung all human prosperity and progress; for, after all, we can accomplish comparatively little; the limited range of our own faculties bounds us on every side,--the field of our powers of observation is small enough, and he who endeavours to narrow the sphere of our inquiries is only pursuing a course that is likely to produce the greatest harm to his fellow-men.

But now, a.s.suming, as we all do, I hope, that these phenomena are properly accessible to inquiry, and setting out upon our search into the causes of the phenomena of organic nature, or, at any rate, setting out to discover how much we at present know upon these abstruse matters, the question arises as to what is to be our course of proceeding, and what method we must lay down for our guidance. I reply to that question, that our method must be exactly the same as that which is pursued in any other scientific inquiry, the method of scientific investigation being the same for all orders of facts and phenomena whatsoever.

I must dwell a little on this point, for I wish you to leave this room with a very clear conviction that scientific investigation is not, as many people seem to suppose, some kind of modern black art. I say that you might easily gather this impression from the manner in which many persons speak of scientific inquiry, or talk about, inductive and deductive philosophy, or the principles of the "Baconian philosophy." I do protest that, of the vast number of cants in this world, there are none, to my mind, so contemptible as the pseudo-scientific cant which is talked about the "Baconian philosophy."