CHAPTER I.
THEORIES OF PREDICATION.--THEORIES OF JUDGMENT.
We may now return to the Syllogistic Forms, and the consideration of the compatibility or incompatibility, implication, and interdependence of propositions.
It was to make this consideration clear and simple that what we have called the Syllogistic Form of propositions was devised. When are propositions incompatible? When do they imply one another? When do two imply a third? We have seen in the Introduction how such questions were forced upon Aristotle by the disputative habits of his time.
It was to facilitate the answer that he analysed propositions into Subject and Predicate, and viewed the Predicate as a reference to a class: in other words, analysed the Predicate further into a Copula and a Class Term.
But before showing how he exhibited the interconnexion of propositions on this plan, we may turn aside to consider various so-called Theories of Predication or of Judgment. Strictly speaking, they are not altogether relevant to Logic, that is to say, as a practical science: they are partly logical, partly psychological theories: some of them have no bearing whatever on practice, but are matters of pure scientific curiosity: but historically they are connected with the logical treatment of propositions as having been developed out of this.
The least confusing way of presenting these theories is to state them and examine them both logically and psychologically. The logical question is, Has the view any advantage for logical purposes? Does it help to prevent error, to clear up confusion? Does it lead to firmer conceptions of the truth? The psychological question is, Is this a correct theory of how men actually think when they make propositions?
It is a question of _what is_ in the one case, and of _what ought to be for a certain purpose_ in the other.
Whether we speak of Proposition or of Judgment does not materially affect our answer. A Judgment is the mental act accompanying a Proposition, or that may be expressed in a proposition and cannot be expressed otherwise: we can give no other intelligible definition or description of a judgment. So a proposition can only be defined as the expression of a judgment: unless there is a judgment underneath them, a form of words is not a proposition.
Let us take, then, the different theories in turn. We shall find that they are not really antagonistic, but only different: that each is substantially right from its own point of view: and that they seem to contradict one another only when the point of view is misunderstood.
I. _That the Predicate term may be regarded as a class in or from which the Subject is included or excluded._ Known as the Class-Inclusion, Class-Reference, or Denotative view.
This way of analysing propositions is possible, as we have seen, because every statement implies a general name, and the extension or denotation of a general name is a class defined by the common attribute or attributes. It is useful for syllogistic purposes: certain relations among propositions can be most simply exhibited in this way.
But if this is called a Theory of Predication or Judgment, and taken psychologically as a theory of what is in men's minds whenever they utter a significant Sentence, it is manifestly wrong. When discussed as such, it is very properly rejected. When a man says "P struck Q,"
he has not necessarily a class of "strikers of Q" definitely in his mind. What he has in his mind is the logical equivalent of this, but it is not this directly. Similarly, Mr. Bradley would be quite justified in speaking of Two Terms and a Copula as a superstition, if it were meant that these analytic elements are present to the mind of an ordinary speaker.
II. _That every Proposition may be regarded as affirming or denying an attribute of a subject._ Known sometimes as the Connotative or the Denotative-Connotative view. This also follows from the implicit presence of a general name in every sentence. But it should not be taken as meaning that the man who says: "Tom came here yesterday,"
or "James generally sits there," has a clearly analysed Subject and Attribute in his mind. Otherwise it is as far wrong as the other view.
III. _That every proposition may be regarded as an equation between two terms._ Known as the Equational View.
This is obviously not true for common speech or ordinary thought.
But it is a possible way of regarding the analytic components of a proposition, legitimate enough if it serves any purpose. It is a modification of the Class-Reference analysis, obtained by what is known as Quantification of the Predicate. In "All S is in P," P is undistributed, and has no symbol of Quantity. But since the proposition imports that All S is a part of P, _i.e._, Some P, we may, if we choose, prefix the symbol of Quantity, and then the proposition may be read "All S = Some P". And so with the other forms.
Is there any advantage in this? Yes: it enables us to subject the formulae to algebraic manipulation. But any logical advantage--any help to thinking? None whatever. The elaborate syllogistic systems of Boole, De Morgan, and Jevons are not of the slightest use in helping men to reason correctly. The value ascribed to them is merely an illustration of the Bias of Happy Exercise. They are beautifully ingenious, but they leave every recorded instance of learned Scholastic trifling miles behind.
IV. _That every proposition is the expression of a comparison between concepts._ Sometimes called the Conceptualist View.
"To judge," Hamilton says, "is to recognise the relation of congruence or confliction in which two concepts, two individual things, or a concept and an individual compared together stand to each other."
This way of regarding propositions is permissible or not according to our interpretation of the words "congruence" and "confliction," and the word "concept". If by concept we mean a conceived attribute of a thing, and if by saying that two concepts are congruent or conflicting, we mean that they may or may not cohere in the same thing, and by saying that a concept is congruent or conflicting with an individual that it may or may not belong to that individual, then the theory is a corollary from Aristotle's analysis. Seeing that we must pass through that analysis to reach it, it is obviously not a theory of ordinary thought, but of the thought of a logician performing that analysis.
The precise point of Hamilton's theory was that the logician does not concern himself with the question whether two concepts are or are not as a matter of fact found in the same subject, but only with the question whether they are of such a character that they may be found, or cannot be found, in the same subject. In so far as his theory is sound, it is an abstruse and technical way of saying that we may consider the consistency of propositions without considering whether or not they are true, and that consistency is the peculiar business of syllogistic logic.
V. _That the ultimate subject of every judgment is reality._
This is the form in which Mr. Bradley and Mr. Bosanquet deny the Ultra-Conceptualist position. The same view is expressed by Mill when he says that "propositions are concerned with things and not with our ideas of them".
The least consideration shows that there is justice in the view thus enounced. Take a number of propositions:--
The streets are wet.
George has blue eyes.
The Earth goes round the Sun.
Two and two make four.
Obviously, in any of these propositions, there is a reference beyond the conceptions in the speaker's mind, viewed merely as incidents in his mental history. They express beliefs about things and the relations among things _in rerum natura_: when any one understands them and gives his assent to them, he never stops to think of the speaker's state of mind, but of what the words represent. When states of mind are spoken of, as when we say that our ideas are confused, or that a man's conception of duty influences his conduct, those states of mind are viewed as objective facts in the world of realities. Even when we speak of things that have in a sense no reality, as when we say that a centaur is a combination of man and horse, or that centaurs were fabled to live in the vales of Thessaly, it is not the passing state of mind expressed by the speaker as such that we attend to or think of; we pass at once to the objective reference of the words.
Psychologically, then, the theory is sound: what is its logical value? It is sometimes put forward as if it were inconsistent with the Class-reference theory or the theory that judgment consists in a comparison of concepts. Historically the origin of its formal statement is its supposed opposition to those theories. But really it is only a misconception of them that it contradicts. It is inconsistent with the Class-reference view only if by a class we understand an arbitrary subjective collection, not a collection of things on the ground of common attributes. And it is inconsistent with the Conceptualist theory only if by a concept we understand not the objective reference of a general name, but what we have distinguished as a conception or a conceptual image. The theory that the ultimate subject is reality is assumed in both the other theories, rightly understood. If every proposition is the utterance of a judgment, and every proposition implies a general name, and every general name has a meaning or connotation, and every such meaning is an attribute of things and not a mental state, it is implied that the ultimate subject of every proposition is reality. But we may consider whether or not propositions are consistent without considering whether or not they are true, and it is only their mutual consistency that is considered in the syllogistic formulae. Thus, while it is perfectly correct to say that every proposition expresses either truth or falsehood, or that the characteristic quality of a judgment is to be true or false, it is none the less correct to say that we may temporarily suspend consideration of truth or falsehood, and that this is done in what is commonly known as Formal Logic.
VI. _That every proposition may be regarded as expressing relations between phenomena._
Bain follows Mill in treating this as the final import of Predication.
But he indicates more accurately the logical value of this view in speaking of it as important for laying out the divisions of Inductive Logic. They differ slightly in their lists of Universal Predicates based upon Import in this sense--Mill's being Resemblance, Coexistence, Simple Sequence, and Causal Sequence, and Bain's being Coexistence, Succession, and Equality or Inequality. But both lay stress upon Coexistence and Succession, and we shall find that the distinctions between Simple Sequence and Causal Sequence, and between Repeated and Occasional Coexistence, are all-important in the Logic of Investigation. But for syllogistic purposes the distinctions have no relevance.
CHAPTER II.
THE "OPPOSITION" OF PROPOSITIONS.--THE INTERPRETATION OF "NO".
Propositions are technically said to be "opposed" when, having the same terms in Subject and Predicate, they differ in Quantity, or in Quality, or in both.[1]
The practical question from which the technical doctrine has been developed was how to determine the significance of contradiction.
What is meant by giving the answer "No" to a proposition put interrogatively? What is the interpretation of "No"? What is the respondent committed to thereby?
"Have all ratepayers a vote?" If you answer "No," you are bound to admit that some ratepayers have not. O is the CONTRADICTORY of A. If A is false, O must be true. So if you deny O, you are bound to admit A: one or other must be true: either Some ratepayers have not a vote or All have.
Is it the case that no man can live without sleep? Deny this, and you commit yourself to maintaining that Some man, one at least, can live without sleep. I is the Contradictory of E; and _vice versa_.
Contradictory opposition is distinguished from CONTRARY, the opposition of one Universal to another, of A to E and E to A. There is a natural tendency to meet a strong assertion with the very reverse.
Let it be maintained that women are essentially faithless or that "the poor in a lump is bad," and disputants are apt to meet this extreme with another, that constancy is to be found only in women or true virtue only among the poor. Both extremes, both A and E, may be false: the truth may lie between: Some are, Some not.
Logically, the denial of A or E implies only the admission of O or I.
You are not committed to the full contrary. But the implication of the Contradictory is absolute; there is no half-way house where the truth may reside. Hence the name of EXCLUDED MIDDLE is applied to the principle that "Of two Contradictories one or other must be true: they cannot both be false".
While both CONTRARIES may be false, they cannot both be true.
It is sometimes said that in the case of Singular propositions, the Contradictory and the Contrary coincide. A more correct doctrine is that in the case of Singular propositions, the distinction is not needed and does not apply. Put the question "Is Socrates wise?" or "Is this paper white?" and the answer "No" admits of only one interpretation, provided the terms remain the same. Socrates may become foolish, or this paper may hereafter be coloured differently, but in either case the subject term is not the same about which the question was asked. Contrary opposition belongs only to general terms taken universally as subjects. Concerning individual subjects an attribute must be either affirmed or denied simply: there is no middle course. Such a proposition as "Socrates is sometimes not wise," is not a true Singular proposition, though it has a Singular term as grammatical subject. Logically, it is a Particular proposition, of which the subject-term is the actions or judgments of Socrates.[2]
Opposition, in the ordinary sense, is the opposition of incompatible propositions, and it was with this only that Aristotle concerned himself. But from an early period in the history of Logic, the word was extended to cover mere differences in Quantity and Quality among the four forms A E I O, which differences have been named and exhibited symmetrically in a diagram known as: The Square of Opposition.
A______Contraries______E / s C e o i n r t o S r t S u a c u b i b a d a l / l t / t e / d e r / i r n a c n s r t s t o n r o i C e / s / I____Sub-contraries____O
The four forms being placed at the four corners of the Square, and the sides and diagonals representing relations between them thus separated, a very pretty and symmetrical doctrine is the result.
_Contradictories_, A and O, E and I, differ both in Quantity and in Quality.