Heroes of the Telegraph - Part 5
Library

Part 5

The alphabet of signals employed is the 'Morse code,' so generally in vogue throughout the world. In the Morse code the letters of the alphabet are represented by combinations of two distinct elementary signals, technically called 'dots' and 'dashes,' from the fact that the Morse recorder actually marks the message in long and short lines, or dots and dashes. In the siphon recorder script dots and dashes are represented by curves of opposite flexure. The condensers are merely used to sharpen the action of the current, and render the signals more concise and distinct on long cables. On short cables, say under three hundred miles long, they are rarely, if ever, used.

The speed of signalling by the siphon recorder is of course regulated by the length of cable through which it is worked. The instrument itself is capable of a wide range of speed. The best operators cannot send over thirty-five words per minute by hand, but a hundred and twenty words or more per minute can be transmitted by an automatic sender, and the recorder has been found on land lines and short cables to write off the message at this incredible speed. When we consider that every word is, on the average, composed of fifteen separate waves, we may better appreciate the rapidity with which the siphon can move. On an ordinary cable of about a thousand miles long, the working speed is about twenty words per minute. On the French Atlantic it is usually about thirteen, although as many as seventeen have sometimes been sent.

The 'duplex' system, or method of telegraphing in opposite directions at once through the same wire, has of late years been applied, in connection with the recorder, to all the long cables of that most enterprising of telegraph companies--the Eastern--so that both stations may 'speak' to each other simultaneously. Thus the carrying capacity of the wire is in practice nearly doubled, and recorders are busy writing at both ends of the cable at once, as if the messages came up out of the sea itself.

We have thus far followed out the recorder in its practical application to submarine telegraphy. Let us now regard it for a moment in its more philosophic aspect. We are at once struck with its self-dependence as a machine, and even its resemblance in some respects to a living creature.

All its activity depends on the galvanic current. From three separate sources invisible currents are led to its princ.i.p.al parts, and are at once physically changed. That entering the mouse-mill becomes trans.m.u.ted in part into the mechanical motion of the revolving drum, and part into electricity of a more intense nature--into mimic lightning, in fact, with its accompaniments of heat and sound. That entering the signal magnet expends part of its force in the magnetism of the core. That entering the signal coil, which may be taken as the brain of the instrument, appears to us as INTELLIGENCE.

The recorder is now in use in all four quarters of the globe, from Northern Europe to Southern Brazil, from China to New England. Many and complete are the adjustments for rendering it serviceable under a wide range of electrical conditions and climatic changes. The siphon is, of course, in a mechanical sense, the most delicate part, but, in an electrical sense, the mouse-mill proves the most susceptible. It is essential for the fine marking of the siphon that the ink should neither be too strongly nor too feebly electrified. When the atmosphere is moderately humid, a proper supply of electricity is generated by the mouse-mill, the paper is sufficiently moist, and the ink flows freely.

But an excess of moisture in the air diminishes the available supply of EXALTED electricity. In fact, the damp depositing on the parts leads the electricity away, and the ink tends to clog in the siphon. On the other hand, drought not only supercharges the ink, but dries the paper so much that it INSULATES the siphon point from the metal tablet and the earth.

There is then an insufficient escape for the electricity of the ink to earth; the ink ceases to flow down the siphon; the siphon itself becomes highly electrified and agitated with vibrations of its own; the line becomes spluttered and uncertain.

Various devices are employed at different stations to cure these local complaints. The electrician soon learns to diagnose and prescribe for this, his most valuable charge. At Aden, where they suffer much from humidity, the mouse-mill is or has been surrounded with burning carbon.

At Malta a gas flame was used for the same purpose. At Suez, where they suffer from drought, a cloud of steam was kept rising round the instrument, saturating the air and paper. At more temperate places the ordinary means of drying the air by taking advantage of the absorbing power of sulphuric acid for moisture prevailed. At Ma.r.s.eilles the recorder acted in some respects like a barometer. Ma.r.s.eilles is subject to sudden incursions of dry northerly winds, termed the MISTRAL.

The recorder never failed to indicate the mistral when it blew, and sometimes even to predict it by many hours. Before the storm was itself felt, the delicate gla.s.s pen became agitated and disturbed, the frail blue line broken and irregular. The electrician knew that the mistral would blow before long, and, as it rarely blows for less than three days at a time, that rather rude wind, so dreaded by the Ma.r.s.eillaise, was doubly dreaded by him.

The recorder was first used experimentally at St. Pierre, on the French Atlantic cable, in 1869. This was numbered 0, as we were told by Mr.

White of Glasgow, the maker, whose skill has contributed not a little to the success of the recorder. No. 1 was first used practically on the Falmouth and Gibraltar cable of the Eastern Telegraph Company in July, 1870. No. 1 was also exhibited at Mr. (now Sir John) Pender's telegraph soiree in 1870. On that occasion, memorable even beyond telegraphic circles, 'three hundred of the notabilities of rank and fashion gathered together at Mr. Pender's house in Arlington Street, Piccadilly, to celebrate the completion of submarine communication between London and Bombay by the successful laying of the Falmouth, Gibraltar and Malta and the British Indian cable lines.' Mr. Pender's house was literally turned outside in; the front door was removed, the courtyard temporarily covered with an iron roof and the whole decorated in the grandest style. Over the gateway was a gallery filled with the band of the Scots Fusilier Guards; and over the portico of the house door hung the grapnel which brought up the 1865 cable, made resplendent to the eye by a coating of gold leaf. A handsome staircase, newly erected, permitted the guests to pa.s.s from the reception-room to the drawing-room. In the grounds at the back of the house stood the royal tent, where the Prince of Wales and a select party, including the Duke of Cambridge and Lady Mayo, wife of the Viceroy of India at that time, were entertained at supper. Into this tent were brought wires from India, America, Egypt, and other places, and Lady Mayo sent off a message to India about half-past eleven, and had received a reply before twelve, telling her that her husband and sons were quite well at five o'clock the next morning. The recorder, which was shown in operation, naturally stood in the place of honour, and attracted great attention.

The minor features of the recorder have been simplified by other inventors of late; for example, magnets of steel have been subst.i.tuted for the electro-magnets which influence the swinging coil; and the ink, instead of being electrified by the mouse-mill, is shed on the paper by a rapid vibration of the siphon point.

To introduce his apparatus for signalling on long submarine cables, Sir William Thomson entered into a partnership with Mr. C. F. Varley, who first applied condensers to sharpen the signals, and Professor Fleeming Jenkin, of Edinburgh University. In conjunction with the latter, he also devised an 'automatic curb sender,' or key, for sending messages on a cable, as the well-known Wheatstone transmitter sends them on a land line.

In both instruments the signals are sent by means of a perforated ribbon of paper; but the cable sender was the more complicated, because the cable signals are formed by both positive and negative currents, and not merely by a single current, whether positive or negative. Moreover, to curb the prolongation of the signals due to induction, each signal was made by two opposite currents in succession--a positive followed by a negative, or a negative followed by a positive, as the case might be. The after-current had the effect of curbing its precursor. This self-acting cable key was brought out in 1876, and tried on the lines of the Eastern Telegraph Company.

Sir William Thomson took part in the laying of the French Atlantic cable of 1869, and with Professor Jenkin was engineer of the Western and Brazilian and Platino-Brazilian cables. He was present at the laying of the Para to Pernambuco section of the Brazilian coast cables in 1873, and introduced his method of deep-sea sounding, in which a steel pianoforte wire replaces the ordinary land line. The wire glides so easily to the bottom that 'flying soundings' can be taken while the ship is going at full speed. A pressure-gauge to register the depth of the sinker has been added by Sir William.

About the same time he revived the Sumner method of finding a ship's place at sea, and calculated a set of tables for its ready application.

His most important aid to the mariner is, however, the adjustable compa.s.s, which he brought out soon afterwards. It is a great improvement on the older instrument, being steadier, less hampered by friction, and the deviation due to the ship's own magnetism can be corrected by movable ma.s.ses of iron at the binnacle.

Sir William is himself a skilful navigator, and delights to cruise in his fine yacht, the Lalla Rookh, among the Western Islands, or up the Mediterranean, or across the Atlantic to Madeira and America. His interest in all things relating to the sea perhaps arose, or at any rate was fostered, by his experiences on the Agamemnon and the Great Eastern.

Babbage was among the first to suggest that a lighthouse might be made to signal a distinctive number by occultations of its light; but Sir William pointed out the merits of the Morse telegraphic code for the purpose, and urged that the signals should consist of short and long flashes of the light to represent the dots and dashes.

Sir William has done more than any other electrician to introduce accurate methods and apparatus for measuring electricity. As early as 1845 his mind was attracted to this subject. He pointed out that the experimental results of William Snow Harris were in accordance with the laws of Coulomb.

In the Memoirs of the Roman Academy of Sciences for 1857 he published a description of his new divided ring electrometer, which is based on the old electroscope of Bohnenberger and since then he has introduced a chain or series of beautiful and effective instruments, including the quadrant electrometer, which cover the entire field of electrostatic measurement. His delicate mirror galvanometer has also been the forerunner of a later circle of equally precise apparatus for the measurement of current or dynamic electricity.

To give even a brief account of all his physical researches would require a separate volume; and many of them are too abstruse or mathematical for the general reader. His varied services have been acknowledged by numerous distinctions, including the highest honour a British man of science can obtain--the Presidency of the Royal Society of London, to which he was elected at the end of last year.

Sir William Thomson has been all his life a firm believer in the truth of Christianity, and his great scientific attainments add weight to the following words, spoken by him when in the chair at the annual meeting of the Christian Evidence Society, May 23, 1889:--'I have long felt that there was a general impression in the non-scientific world, that the scientific world believes Science has discovered ways of explaining all the facts of Nature without adopting any definite belief in a Creator. I have never doubted that that impression was utterly groundless. It seems to me that when a scientific man says--as it has been said from time to time--that there is no G.o.d, he does not express his own ideas clearly.

He is, perhaps, struggling with difficulties; but when he says he does not believe in a creative power, I am convinced he does not faithfully express what is in his own mind, He does not fully express his own ideas. He is out of his depth.

'We are all out of our depth when we approach the subject of life. The scientific man, in looking at a piece of dead matter, thinking over the results of certain combinations which he can impose upon it, is himself a living miracle, proving that there is something beyond that ma.s.s of dead matter of which he is thinking. His very thought is in itself a contradiction to the idea that there is nothing in existence but dead matter. Science can do little positively towards the objects of this society. But it can do something, and that something is vital and fundamental. It is to show that what we see in the world of dead matter and of life around us is not a result of the fortuitous concourse of atoms.

'I may refer to that old, but never uninteresting subject of the miracles of geology. Physical science does something for us here. St.

Peter speaks of scoffers who said that "all things continue as they were from the beginning of the creation;" but the apostle affirms himself that "all these things shall be dissolved." It seems to me that even physical science absolutely demonstrates the scientific truth of these words. We feel that there is no possibility of things going on for ever as they have done for the last six thousand years. In science, as in morals and politics, there is absolutely no periodicity. One thing we may prophesy of the future for certain--it will be unlike the past.

Everything is in a state of evolution and progress. The science of dead matter, which has been the princ.i.p.al subject of my thoughts during my life, is, I may say, strenuous on this point, that THE AGE OF THE EARTH IS DEFINITE. We do not say whether it is twenty million years or more, or less, but me say it is NOT INDEFINITE. And we can say very definitely that it is not an inconceivably great number of millions of years.

Here, then, we are brought face to face with the most wonderful of all miracles, the commencement of life on this earth. This earth, certainly a moderate number of millions of years ago, was a red-hot globe; all scientific men of the present day agree that life came upon this earth somehow. If some form or some part of the life at present existing came to this earth, carried on some moss-grown stone perhaps broken away from mountains in other worlds; even if some part of the life had come in that way--for there is nothing too far-fetched in the idea, and probably some such action as that did take place, since meteors do come every day to the earth from other parts of the universe;--still, that does not in the slightest degree diminish the wonder, the tremendous miracle, we have in the commencement of life in this world.'

CHAPTER V. CHARLES WILLIAM SIEMENS.

Charles William Siemens was born on April 4, 1823, at the little village of Lenthe, about eight miles from Hanover, where his father, Mr.

Christian Ferdinand Siemens, was 'Domanen-pachter,' and farmed an estate belonging to the Crown. His mother was Eleonore Deichmann, a lady of n.o.ble disposition, and William, or Carl Wilhelm, was the fourth son of a family of fourteen children, several of whom have distinguished themselves in scientific pursuits. Of these, Ernst Werner Siemens, the fourth child, and now the famous electrician of Berlin, was a.s.sociated with William in many of his inventions; Fritz, the ninth child, is the head of the well-known Dresden gla.s.s works; and Carl, the tenth child, is chief of the equally well-known electrical works at St. Petersburg.

Several of the family died young; others remained in Germany; but the enterprising spirit, natural to them, led most of the sons abroad--Walter, the twelfth child, dying at Tiflis as the German Consul there, and Otto, the fourteenth child, also dying at the same place.

It would be difficult to find a more remarkable family in any age or country. Soon after the birth of William, Mr. Siemens removed to a larger estate which he had leased at Menzendorf, near Lubeck.

As a child William was sensitive and affectionate, the baby of the family, liking to roam the woods and fields by himself, and curious to observe, but not otherwise giving any signs of the engineer. He received his education at a commercial academy in Lubeck, the Industrial School at Magdeburg (city of the memorable burgomaster, Otto von Guericke), and at the University of Gottingen, which he entered in 1841, while in his eighteenth year. Were he attended the chemical lectures of Woehler, the discoverer of organic synthesis, and of Professor Himly, the well-known physicist, who was married to Siemens's eldest sister, Mathilde. With a year at Gottingen, during which he laid the basis of his theoretical knowledge, the academical training of Siemens came to an end, and he entered practical life in the engineering works of Count s...o...b..rg, at Magdeburg. At the University he had been instructed in mechanical laws and designs; here he learned the nature and use of tools and the construction of machines. But as his University career at Gottingen lasted only about a year, so did his apprenticeship at the s...o...b..rg Works. In this short time, however, he probably reaped as much advantage as a duller pupil during a far longer term.

Young Siemens appears to have been determined to push his way forward. In 1841 his brother Werner obtained a patent in Prussia for electro-silvering and gilding; and in 1843 Charles William came to England to try and introduce the process here. In his address on 'Science and Industry,' delivered before the Birmingham and Midland Inst.i.tute in 1881, while the Paris Electrical Exhibition was running, Sir William gave a most interesting account of his experiences during that first visit to the country of his adoption.

'When,' said he, 'the electrotype process first became known, it excited a very general interest; and although I was only a young student at Gottingen, under twenty years of age, who had just entered upon his practical career with a mechanical engineer, I joined my brother, Werner Siemens, then a young lieutenant of artillery in the Prussian service, in his endeavours to accomplish electro-gilding; the first impulse in this direction having been given by Professor C. Himly, then of Gottingen. After attaining some promising results, a spirit of enterprise came over me, so strong that I tore myself away from the narrow circ.u.mstances surrounding me, and landed at the east end of London with only a few pounds in my pocket and without friends, but with an ardent confidence of ultimate success within my breast.

'I expected to find some office in which inventions were examined into, and rewarded if found meritorious, but no one could direct me to such a place. In walking along Finsbury Pavement, I saw written up in large letters, "So-and-so" (I forget the name), "Undertaker," and the thought struck me that this must be the place I was in quest of; at any rate, I thought that a person advertising himself as an "undertaker" would not refuse to look into my invention with a view of obtaining for me the sought-for recognition or reward. On entering the place I soon convinced myself, however, that I came decidedly too soon for the kind of enterprise here contemplated, and, finding myself confronted with the proprietor of the establishment, I covered my retreat by what he must have thought a very lame excuse. By dint of perseverance I found my way to the patent office of Messrs. Poole and Carpmael, who received me kindly, and provided me with a letter of introduction to Mr. Elkington.

Armed with this letter, I proceeded to Birmingham, to plead my cause before your townsman.

'In looking back to that time, I wonder at the patience with which Mr.

Elkington listened to what I had to say, being very young, and scarcely able to find English words to convey my meaning. After showing me what he was doing already in the way of electro-plating, Mr. Elkington sent me back to London in order to read some patents of his own, asking me to return if, after perusal, I still thought I could teach him anything. To my great disappointment, I found that the chemical solutions I had been using were actually mentioned in one of his patents, although in a manner that would hardly have sufficed to enable a third person to obtain practical results.

On my return to Birmingham I frankly stated what I had found, and with this frankness I evidently gained the favour of another townsman of yours, Mr. Josiah Mason, who had just joined Mr. Elkington in business, and whose name, as Sir Josiah Mason, will ever be remembered for his munificent endowment of education. It was agreed that I should not be judged by the novelty of my invention, but by the results which I promised, namely, of being able to deposit with a smooth surface 30 dwt.

of silver upon a dish-cover, the crystalline structure of the deposit having theretofore been a source of difficulty. In this I succeeded, and I was able to return to my native country and my mechanical engineering a comparative Croesus.

'But it was not for long, as in the following year (1844) I again landed in the Thames with another invention, worked out also with my brother, namely, the chronometric governor, which, though less successful, commercially speaking, than the first, obtained for me the advantage of bringing me into contact with the engineering world, and of fixing me permanently in this country. This invention was in course of time applied by Sir George Airy, the then Astronomer-Royal, for regulating the motion of his great transit and touch-recording instrument at the Royal Observatory, where it still continues to be employed.

'Another early subject of mine, the anastatic printing process, found favour with Faraday, "the great and the good," who made it the subject of a Friday evening lecture at the Royal Inst.i.tution. These two circ.u.mstances, combined, obtained for me an entry into scientific circles, and helped to sustain me in difficulty, until, by dint of a certain determination to win, I was able to advance step by step up to this place of honour, situated within a gunshot of the scene of my earliest success in life, but separated from it by the time of a generation. But notwithstanding the lapse of time, my heart still beats quick each time I come back to the scene of this, the determining incident of my life.'

The 'anastatic' process, described by Faraday in 1845, and partly due to Werner Siemens, was a method of reproducing printed matter by transferring the print from paper to plates of zinc. Caustic baryta was applied to the printed sheet to convert the resinous ingredients of the ink into an insoluble soap, the stearine being precipitated with sulphuric acid. The letters were then transferred to the zinc by pressure, so as to be printed from. The process, though ingenious and of much interest at the time, has long ago been superseded by photographic methods.

Even at this time Siemens had several irons in the fire. Besides the printing process and the chronometric governor, which operated by the differential movement between the engine and a chronometer, he was occupied with some minor improvements at Hoyle's Calico Printing Works.

He also engaged in railway works from time to time; and in 1846 he brought out a double cylinder air-pump, in which the two cylinders are so combined, that the compressing side of the first and larger cylinder communicated with the suction side of the second and smaller cylinder, and the limit of exhaustion was thereby much extended. The invention was well received at the time, but is now almost forgotten.

Siemens had been trained as a mechanical engineer, and, although he became an eminent electrician in later life, his most important work at this early stage was non-electrical; indeed, the greatest achievement of his life was non-electrical, for we must regard the regenerative furnace as his MAGNUM OPUS. Though in 1847 he published a paper in Liebig's ANNALEN DER CHEMIE on the 'Mercaptan of Selenium,' his mind was busy with the new ideas upon the nature of heat which were promulgated by Carnot, Clayperon, Joule, Clausius, Mayer, Thomson, and Rankine. He discarded the older notions of heat as a substance, and accepted it as a form of energy. Working on this new line of thought, which gave him an advantage over other inventors of his time, he made his first attempt to economise heat, by constructing, in 1847, at the factory of Mr.

John Hick, of Bolton, an engine of four horse-power, having a condenser provided with regenerators, and utilising superheated steam. Two years later he continued his experiments at the works of Messrs. Fox, Henderson, and Co., of Smethwick, near Birmingham, who had taken the matter in hand. The use of superheated steam was, however, attended with many practical difficulties, and the invention was not entirely successful, but it embraced the elements of success; and the Society of Arts, in 1850, acknowledged the value of the principle, by awarding Mr.

Siemens a gold medal for his regenerative condenser. Various papers read before the Inst.i.tution of Mechanical Engineers, the Inst.i.tution of Civil Engineers, or appearing in DINGLER'S JOURNAL and the JOURNAL OF THE FRANKLIN INSt.i.tUTE about this time, ill.u.s.trate the workings of his mind upon the subject. That read in 1853, before the Inst.i.tution of Civil Engineers, 'On the Conversion of Heat into Mechanical Effect,' was the first of a long series of communications to that learned body, and gained for its author the Telford premium and medal. In it he contended that a perfect engine would be one in which all the heat applied to the steam was used up in its expansion behind a working piston, leaving none to be sent into a condenser or the atmosphere, and that the best results in any actual engine would be attained by carrying expansion to the furthest possible limit, or, in practice, by the application of a regenerator. Anxious to realise his theories further, he constructed a twenty horse-power engine on the regenerative plan, and exhibited it at the Paris Universal Exhibition of 1855; but, not realising his expectations, he subst.i.tuted for it another of seven-horse power, made by M. Farcot, of Paris, which was found to work with considerable economy. The use of superheated steam, however, still proved a drawback, and the Siemens engine has not been extensively used.

On the other hand, the Siemens water-meter, which he introduced in 1851, has been very widely used, not only in this country, but abroad. It acts equally well under all variations of pressure, and with a constant or an intermittent supply.

Meanwhile his brother Werner had been turning his attention to telegraphy, and the correspondence which never ceased between the brothers kept William acquainted with his doings. In 1844, Werner, then an officer in the Prussian army, was appointed to a berth in the artillery workshops of Berlin, where he began to take an interest in the new art of telegraphy. In 1845 Werner patented his dial and printing telegraph instruments, which came into use all over Germany, and introduced an automatic alarm on the same principle. These inventions led to his being made, in 1846, a member of a commission in Berlin for the introduction of electric telegraphs instead of semaph.o.r.es.

He advocated the use of gutta-percha, then a new material, for the insulation of underground wires, and in 1847 designed a screw-press for coating the wires with the gum rendered plastic by heat. The following year he laid the first great underground telegraph line from Berlin to Frankfort-on-the-Main, and soon afterwards left the army to engage with Mr. Halske in the management of a telegraph factory which they had conjointly established in 1847. In 1852 William took an office in John Street, Adelphi, with a view to practise as a civil engineer. Eleven years later, Mr. Halske and William Siemens founded in London the house of Siemens, Halske & Co., which began with a small factory at Millbank, and developed in course of time into the well-known firm of Messrs.

Siemens Brothers, and was recently transformed into a limited liability company.

In 1859 William Siemens became a naturalised Englishman, and from this time forward took an active part in the progress of English engineering and telegraphy. He devoted a great part of his time to electrical invention and research; and the number of telegraph apparatus of all sorts--telegraph cables, land lines, and their accessories--which have emanated from the Siemens Telegraph Works has been remarkable. The engineers of this firm have been pioneers of the electric telegraph in every quarter of the globe, both by land and sea. The most important aerial line erected by the firm was the Indo-European telegraph line, through Prussia, Russia, and Persia, to India. The North China cable, the Platino-Brazileira, and the Direct United States cable, were laid by the firm, the latter in 1874-5 So also was the French Atlantic cable, and the two Jay Could Atlantic cables. At the time of his death the manufacture and laying of the Bennett-Mackay Atlantic cables was in progress at the company's works, Charlton. Some idea of the extent of this manufactory may be gathered from the fact that it gives employment to some 2,000 men. All branches of electrical work are followed out in its various departments, including the construction of dynamos and electric lamps.

On July 23, 1859, Siemens was married at St. James's, Paddington, to Anne, the youngest daughter of Mr. Joseph Gordon, Writer to the Signet, Edinburgh, and brother to Mr. Lewis Gordon, Professor of Engineering in the University of Glasgow, He used to say that on March 19 of that year he took oath and allegiance to two ladies in one day--to the Queen and his betrothed. The marriage was a thoroughly happy one.

Although much engaged in the advancement of telegraphy, he was also occupied with his favourite idea of regeneration. The regenerative gas furnace, originally invented in 1848 by his brother Friedrich, was perfected and introduced by him during many succeeding years.

The difficulties overcome in the development of this invention were enormous, but the final triumph was complete.