Fragments of science - Part 5
Library

Part 5

By this mode of experiment it was proved that the selfsame molecular arrangement which renders a gas a powerful absorber, renders it a powerful radiator--that the atom or molecule which is competent to intercept the calorific waves is, in the same degree, competent to send them forth. Thus, while the atoms of elementary gases proved themselves unable to emit any sensible amount of radiant heat, the molecules of compound gases were shown to be capable of powerfully disturbing the surrounding aether. By special modes of experiment the same was proved to hold good for the vapours of volatile liquids, the radiative power of every vapour being found proportional to its absorptive power.

The method of experiment here pursued, though not of the simplest character, is still easy to grasp. When air is permitted to rush into an exhausted tube, the temperature of the air is raised to a degree equivalent to the _vis viva_ extinguished. [Footnote: See above for a definition of _vis viva_.] Such air is said to be dynamically heated, and, if pure, it shows itself incompetent to radiate, even when a rock-salt window is provided for the pa.s.sage of its rays. But if instead of being empty the tube contain a small quant.i.ty of vapour, the warmed air communicates its heat by contact to the vapour, the molecules of which convert into the radiant form the heat imparted to them by the atoms of the air. By this process also, which I have called Dynamic Radiation, the reciprocity of radiation and absorption has been conclusively proved. [Footnote: When heated air imparts its motion to another gas or vapour, the transference of heat is accompanied by a change of vibrating period. The Dynamic Radiation of vapours is rendered possible by this trans.m.u.tation of vibrations.]

In the excellent researches of Leslie, De la Provostaye and Detains, and Balfour Stewart, the same reciprocity, as regards solid bodies, has been variously ill.u.s.trated; while the labours, theoretical and experimental, of Kirchhoff have given this subject a wonderful expansion, and enriched it by applications of the highest kind. To their results are now to be added the foregoing, whereby gases and vapours, which have been hitherto thought inaccessible to experiments with the thermo-electric pile, are proved by it to exhibit the indissoluble duality of radiation and absorption, the influence of chemical combination on both being exhibited in the most decisive and extraordinary way.

15. Influence of Vibrating Period and Molecular Form. Physical a.n.a.lysis of the Human Breath.

In the foregoing experiments with gases and vapours have employed throughout invisible rays, and found e of these bodies so impervious to radiant heat, that lengths of a few feet they intercept every ray as actually as a layer of pitch. The substances, however, which show themselves thus opaque to radiant heat perfectly transparent to light.

Now the rays of light differ from those of invisible heat merely in point period, the former failing to affect the retina because their periods of recurrence are too slow. Hence, in one way or other, the transparency of our gases and vapours depends upon the periods of the waves which impinge upon them. What is the nature of this dependence?

The admirable researches of Kirchhoff help us an answer. The atoms and molecules of every gas e certain definite rates of oscillation, and those waves aether are most copiously absorbed whose periods recurrence synchronise with those of the atomic ups amongst which they pa.s.s. Thus, when we find invisible rays absorbed and the visible ones transmitted by a layer of gas, we conclude that the oscillating periods of the atoms const.i.tuting the gaseous molecules coincide with those of the invisible, and not with those of the visible spectrum.

It requires some discipline of the imagination to form a clear picture of this process. Such a picture is, however, possible, and ought to be obtained. When the waves of aether impinge upon molecules whose periods of vibration coincide with the recurrence of the undulations, the timed strokes of the waves augment the vibration of the molecules, as a heavy pendulum is set in motion by well-timed puffs of breath.

Millions of millions of shocks are received every second from the calorific waves; and it is not difficult to see that as every wave arrives just in time to repeat the action of its predecessor, the molecules must finally be caused to swing through wider s.p.a.ces than if the arrivals were not so timed. In fact, it is not difficult to see that an a.s.semblage of molecules, operated upon by contending waves, might remain practically quiescent. This is actually the case when the waves of the visible spectrum pa.s.s through a transparent gas or vapour. There is here no sensible transference of motion from the aether to the molecules; in other words, there is no sensible absorption of heat.

One striking example of the influence of period may be here recorded.

Carbonic acid gas is one of the feeblest absorbers of the radiant heat emitted by solid bodies. It is, for example, to a great extent transparent to the rays emitted by the heated copper plate already referred to. There are, however, certain rays, comparatively few in number, emitted by the copper, to which the carbonic acid is impervious; and could we obtain a source of heat emitting such rays only, we should find carbonic acid more opaque to the radiation from that source, than any other gas. Such a source is actually found in the flame of carbonic oxide, where hot carbonic acid const.i.tutes the main radiating body. Of the rays emitted by our heated plate of copper, olefiant gas absorbs ten times the quant.i.ty absorbed by carbonic acid. Of the rays emitted by a carbonic oxide flame, carbonic acid absorbs twice as much as olefiant gas. This wonderful change in the power of the former, as an absorber, is simply due to the fact, that the periods of the hot and cold carbonic acid are identical, and that the waves from the flame freely transfer their motion to the molecules which synchronise with them. Thus it is that the tenth an atmosphere of carbonic acid, enclosed in a tube four feet long, absorbs 60 per cent. of the radiation from carbonic oxide flame, while one-thirtieth of an atmosphere absorbs 48 per cent. of the heat from the same source.

In fact, the presence of the minutest quant.i.ty of carbonic acid may be detected by its action on the rays from the carbonic oxide flame.

Carrying, for example, the dried human breath into a tube four feet long, the absorption there effected by the carbonic acid of the breath amounts to 50 per cent. of the entire radiation. Radiant heat may indeed be employed as a means of determining practically the amount of carbonic acid expired from the lungs. My late a.s.sistant, Mr. Barrett, while under my direction, made this determination. The absorption produced by the breath freed from its moisture, but retaining its carbonic acid, was first determined. Carbonic acid, artificially prepared, was then mixed with dry air in such proportions that the action of the mixture upon the rays of heat was the same as that of the dried breath. The percentage of the former being known, immediately gave that of the latter. The same breath, a.n.a.lysed chemically by Dr. Frankland, and physically by Mr. Barrett, gave the following results:

Percentage of Carbonic Acid in the Human Breath.

Chemical a.n.a.lysis Physical a.n.a.lysis

4.66 4.56

5.33 5.22

It is thus proved that in the quant.i.ty of aethereal motion which it is competent to take up, we have a practical measure of the carbonic acid of the breath, and hence of the combustion going on in the human lungs.

Still this question of period, though of the utmost importance, is not competent to account for the whole of the observed facts. The aether, as far as we know, accepts vibrations of all periods with the same readiness. To it the oscillations of an atom of free oxygen are just as acceptable as those of the atoms in a molecule of olefiant gas; that the vibrating oxygen then stands so far below the olefiant gas in radiant power must be referred not to period, but to some other peculiarity. The atomic group which const.i.tutes the molecule of olefiant gas, produces many thousand times the disturbance caused by the oxygen, it may be because the group is able to lay a vastly more powerful hold upon the aether than single atoms can. Another, and probably very potent cause of the difference may be, that the vibrations, being those of the const.i.tuent atoms of the molecule, [Footnote: See 'Physical Considerations,' Art. iv.] are generated in highly condensed aether, which acts like: condensed air upon sound.

But whatever may be the fate of these attempts to visualise the physics of the process, it will still remain true, that to account for the phenomena of radiation and absorption we must take into consideration the shape, size, and condition of the aether within the molecules, by which the external aether is disturbed.

16. Summary and Conclusion.

Let us now cast a momentary glance over the ground that we have left behind. The general nature of light and heat was first briefly described: the compounding of matter from elementary atoms, and the influence of the act of combination on radiation and absorption, were considered and experimentally ill.u.s.trated. Through the transparent elementary gases radiant heat was found to pa.s.s as through a vacuum, while many of the compound gases presented almost impa.s.sable obstacles to the calorific-waves. This deportment of the simple gases directed our attention to other elementary bodies, the examination of which led to the discovery that the element iodine, dissolved in bisulphide of carbon, possesses the power detaching, with extraordinary sharpness, the light of the spectrum from its heat, intercepting all luminous rays up to the extreme red, and permitting the calorific rays beyond the red to pa.s.s freely through it. This substance was then employed to filter the beams of the electric light, and to form foci of invisible rays so intense as to produce almost all the effects obtainable in ordinary fire. Combustible bodies were burnt, and refractory ones were raised to a white heat, by the concentrated invisible rays. Thus, by exalting their refrangibility, the invisible rays of the electric light were rendered visible, and all the colours of the solar spectrum were extracted from utter darkness. The extreme richness of the electric light in invisible rays of low refrangibility was demonstrated, one-eighth only of its radiation consisting of luminous rays. The deadness of the optic nerve to those invisible rays was proved, and experiments were then added to show that the bright and the dark rays of a solid body, raised gradually to incandescence, are strengthened together; intense dark heat being an invariable accompaniment of intense white heat. A sun could not be formed, or a meteorite rendered luminous, on any other condition. The light-giving rays const.i.tuting only a small fraction of the total radiation, their unspeakable importance to us is due to the fact, that their periods are attuned to the special requirements of the eye.

Among the vapours of volatile liquids vast differences were also found to exist, as regards their powers of absorption. We followed various molecules from a state of liquid to a state of gas, and found, in both states of aggregation, the power of the individual molecules equally a.s.serted. The position of a vapour as an absorber of radiant heat was shown to be determined by that of the liquid from which it is derived.

Reversing our conceptions, and regarding the molecules of gases and vapours not as the recipients but as the originators of wave-motion; not as absorbers but as radiators; it was proved that the powers of absorption and radiation went hand in hand, the self-same chemical act which rendered a body competent to intercept the waves of aether, rendering it competent, in the same degree, to generate them. Perfumes were next subjected to examination, and, notwithstanding their extraordinary tenuity, they were found vastly superior, in point of absorptive power, to the body of the air in which they were diffused.

We were led thus slowly up to the examination of the most widely diffused and most important of all vapours--the aqueous vapour of our atmosphere, and we found in it a potent absorber of the purely calorific rays. The power of this substance to influence climate, and its general influence on the temperature of the earth, were then briefly dwelt upon. A cobweb spread above a blossom is sufficient to protect it from nightly chill; and thus the aqueous vapour of our air, attenuated as it is, checks the drain of terrestrial heat, and saves the surface of our planet from the refrigeration which would a.s.suredly accrue, were no such substance interposed between it and the voids of s.p.a.ce. We considered the influence of vibrating period, and molecular form, on absorption and radiation, and finally deduced, from its action upon radiant heat, the exact amount of carbonic acid expired by the human lungs.

Thus, in brief outline, were placed before you some ofthe results of recent enquiries in the domain of Radiation, and my aim throughout has been to raise in your minds distinct physical images of the various processes involved in our researches. It is thought by some that natural science has a deadening influence on the imagination, and a doubt might fairly be raised as to the value of any study which would necessarily have this effect. But the experience of the last hour must, I think, have convinced you, that the study of natural science goes hand in hand with the culture of the imagination. Throughout the greater part of this discourse we have been sustained by this faculty.

We have been picturing atoms, and molecules, and vibrations, and waves, which eye has never seen nor ear heard, and which can only be discerned by the exercise of imagination. This, in fact, is the faculty which enables us transcend the boundaries of sense, and connect the phenomena of our visible world with those of an invisible one. Without imagination we never could have risen to the conceptions which have occupied us here today; and in proportion to your power of exercising this faculty aright, and of a.s.sociating definite mental images with the terms employed, will be the pleasure and the profit which you will derive from this lecture.

The outward facts of nature are insufficient to satisfy the mind. We cannot be content with knowing that the light and heat of the sun illuminate and warm the world. We are led irresistibly to enquire, 'What is light, and what is heat?' and this question leads us at once out of the region of sense into that of imagination. [Footnote: This line of thought was pursued further five years subsequently. See 'Scientific Use of the Imagination' in Vol. II.]

Thus pondering, and questioning, and striving to supplement that which is felt and seen, but which is incomplete, by something unfelt and unseen which is necessary to its completeness, men of genius have in part discerned, not only the nature of light and heat, but also, through them, the general relationship of natural phenomena. The working power of Nature consists of actual or potential motion, of which all its phenomena are but special forms. This motion manifests itself in tangible and in intangible matter, being incessantly transferred from the one to the other, and incessantly transformed by the change. It is as real in the waves of the aether as in the waves of the sea; the latter--derived as they are from winds, which in their turn are derived from the sun--are, indeed, nothing more than the heaped-up motion of the aether waves. It is the calorific waves emitted by the sun which heat our air, produce our winds, and hence agitate our ocean. And whether they break in foam upon the sh.o.r.e, or rub silently against the ocean's bed, or subside by the mutual friction of their own parts, the sea waves, which cannot subside without producing heat, finally resolve themselves into waves of aether, thus regenerating the motion from which their temporary existence was derived. This connection is typical. Nature is not an aggregate of independent parts, but an organic whole. If you open a piano and sing into it, a certain string will respond. Change the pitch of our voice; the first string ceases to vibrate, but another replies. Change again the pitch; the first two strings are silent, while another resounds. Thus is sentient man acted on by Nature, the optic, the auditory, and other nerves of the human body being so many strings differently tuned, and responsive to different forms of the universal power.

III ON RADIANT HEAT IN RELATION TO THE COLOUR AND CHEMICAL CONSt.i.tUTION OF BODIES.

[Footnote: A discourse delivered in the Royal Inst.i.tution of Great Britain, Jan. 19, 1866.]

ONE of the most important functions of physical science, considered as a discipline of the mind, is to enable us by means of the sensible processes of Nature to apprehend the insensible. The sensible processes give direction to the line of thought; but this once given, the length of the line is not limited by the boundaries of the senses.

Indeed, the domain of the senses, in Nature, is almost infinitely small in comparison with the vast region accessible to thought which lies beyond them. From a few observations of a comet, when it comes within the range of his telescope, an astronomer can calculate its path in regions which no telescope can reach: and in like manner, by means of data furnished in the narrow world of the senses, we make ourselves at home in other and wider worlds, which are traversed by the intellect alone.

From the earliest ages the questions, 'What is light?' and 'What is heat?' have occurred to the minds of men; but these questions never would have been answered had they not been preceded by the question, 'What is sound?' Amid the grosser phenomena of acoustics the mind was first disciplined, conceptions being thus obtained from direct observation, which were afterwards applied to phenomena of a character far too subtle to be observed directly. Sound we know to be due to vibratory motion. A vibrating tuning-fork, for example, moulds the air around it into undulations or waves, which speed away on all sides with a certain measured velocity, impinge upon the drum of the ear, shake the auditory nerve, and awake in the brain the sensation of sound. When sufficiently near a sounding body we can feel the vibrations of the air. A deaf man, for example, plunging his hand into a bell when it is sounded, feels through the common nerves of his body those tremors which, when imparted to the nerves of healthy ears, are translated into sound. There are various ways of rendering those sonorous vibrations not only tangible but visible; and it was not until numberless experiments of this kind had been executed, that the scientific investigator abandoned himself wholly, and without a shadow of misgiving, to the conviction that what is sound within us is, outside of us, a motion of the air.

But once having established this fact--once having proved beyond all doubt that the sensation of sound is produced by an agitation of the auditory nerve--the thought soon suggested itself that light might be due to an agitation of the optic nerve. This was a great step in advance of that ancient notion which regarded light as something emitted by the eye, and not as anything imparted to it. But if light be produced by an agitation of the retina, what is it that produces the agitation? Newton, you know, supposed minute particles to be shot through the humours of the eye against the retina, which he supposed to hang like a target at the back of the eye. The impact of these particles against the target, Newton believed to be the cause of light. But Newton's notion has not held its ground, being entirely driven from the field by the more wonderful and far more philosophical notion that light, like sound, is a product of wave-motion.

The domain in which this motion of light is carried on lies entirely beyond the reach of our senses. The waves of light require a medium for their formation and propagation; but we cannot see, or feel, or taste, or smell this medium. How, then, has its existence been established? By showing, that by the a.s.sumption of this wonderful intangible aether, all the phenomena of optics are accounted for, with a fulness, and clearness, and conclusiveness, which leave no desire of the intellect unsatisfied. When the law of gravitation first suggested itself to the mind of Newton, what did he do? He set himself to examine whether it accounted for all the facts. He determined the courses of the planets; he calculated the rapidity of the moon's fall towards the earth; he considered the precession of the equinoxes, the ebb and flow of the tides, and found all explained by the law of gravitation. He therefore regarded this law as established, and the verdict of science subsequently confirmed his conclusion. On similar, and, if possible, on stronger grounds, we found our belief in the existence of the universal aether. It explains facts far more various and complicated than those on which Newton based his law. If a single phenomenon could be pointed out which the aether is proved incompetent to explain, we should have to give it up; but no such phenomenon has ever been pointed out. It is, therefore, at least as certain that s.p.a.ce is filled with a medium, by means of which suns and stars diffuse their radiant power, as that it is traversed by that force which holds in its grasp, not only our planetary system, but the immeasurable heavens themselves.

There is no more wonderful instance than this of the production of a line of thought, from the world of the senses into the region of pure imagination. I mean by imagination here, not that play of fancy which can give to airy nothings a local habitation and a name, but that power which enables the mind to conceive realities which lie beyond the range of the senses--to present to itself distinct images of processes which, though mighty in the aggregate beyond all conception, are so minute individually as to elude all observation. It is the waves of air excited by a tuning-fork which render its vibrations audible. It is the waves of aether sent forth from those lamps overhead which render them luminous to us; but so minute are these waves, that it would take from 30,000 to 60,000 of them placed end to end to cover a single inch. Their number, however, compensates for their minuteness. Trillions of them have entered your eyes, and hit the retina at the backs of your eyes, in the time consumed in the utterance of the shortest sentence of this discourse. This is the steadfast result of modern research; but we never could have reached it without previous discipline. We never could have measured the waves of light, nor even imagined them to exist, had we not previously exercised ourselves among the waves of sound. Sound and light are now mutually helpful, the conceptions of each being expanded, strengthened, and defined by the conceptions of the other.

The aether which conveys the pulses of light and heat not only fills celestial s.p.a.ce, swathing suns, and planets, and moons, but it also encircles the atoms of which these bodies are composed. It is the motion of these atoms, and not that of any sensible parts of bodies, that the aether conveys. This motion is the objective cause of what, in our sensations, are light and heat. An atom, then, sending its pulses through the aether, resembles a tuning-fork sending its pulses through the air. Let us look for a moment at this thrilling medium, and briefly consider its relation to the bodies whose vibrations it conveys. Different bodies, when heated to the same temperature, possess very different powers of agitating the aether: some are good radiators, others are bad radiators; which means that some are so const.i.tuted as to communicate their atomic motion freely to the aether, producing therein powerful undulations; while the atoms of others are unable thus to communicate their motions, but glide through the medium without materially disturbing its repose. Recent experiments have proved that elementary bodies, except under certain anomalous conditions, belong to the cla.s.s of bad radiators. An atom, vibrating in the aether, resembles a naked tuning-fork vibrating in the air. The amount of motion communicated to the air by the thin p.r.o.ngs is too small to evoke at any distance the sensation of sound.

But if we permit the atoms to combine chemically and form molecules, the result, in many cases, is an enormous change in the power of radiation. The amount of aethereal disturbance, produced by the combined atoms of a body, may be many thousand times that produced by the same atoms when uncombined.

The pitch of a musical note depends upon the rapidity of its vibrations, or, in other words, on the length of its waves. Now, the pitch of a note answers to the colour of light. Taking a slice of white light from the sun, or from an electric lamp, and causing the light to pa.s.s through an arrangement of prisms, it is decomposed. We have the effect obtained by Newton, who first unrolled the solar beam into the splendours of the solar spectrum. At one end of this spectrum we have red light, at the other, violet; and between those extremes lie the other prismatic colours. As we advance along the spectrum from the red to the violet, the pitch of the light--if I may use the expression--heightens, the sensation of violet being produced by a more rapid succession of impulses than that which produces the impression of red. The vibrations of the violet are about twice as rapid as those of the red; in other words, the range of the visible spectrum is about an octave.

There is no solution of continuity in this spectrum one colour changes into another by insensible gradations. It is as if an infinite number of tuning-forks, of gradually augmenting pitch, were vibrating at the same time. But turning to another spectrum--that, namely, obtained from the incandescent vapour of silver--you observe that it consists of two narrow and intensely luminous green bands. Here it is as if two forks only, of slightly different pitch, were vibrating. The length of the waves which produce this first band is such that 47,460 of them, placed end to end, would fill an inch. The waves which produce the second band are a little shorter; it would take of these 47,920 to fill an inch. In the case of the first band, the number of impulses imparted, in one second, to every eye which sees it, is 677 millions of millions; while the number of impulses imparted, in the same time, by the second band is 600 millions of millions. We may project upon a white screen the beautiful stream of green light from which these bands were derived. This luminous stream is the incandescent vapour of silver. The rates of vibration of the atoms of that vapour are as rigidly fixed as those of two tuning-forks; and to whatever height the temperature of the vapour may be raised, the rapidity of its vibrations, and consequently its colour, which wholly depends upon that rapidity, remain unchanged.

The vapour of water, as well as the vapour of silver, has its definite periods of vibration, and these are such as to disqualify the vapour, when acting freely as such, from being raised to a white heat. The oxyhydrogen flame, for example, consists of hot aqueous vapour. It is scarcely visible in the air of this room, and it would be still less visible if we could burn the gas in a clean atmosphere. But the atmosphere, even at the summit of Mont Blanc, is dirty; in London it is more than dirty; and the burning dirt gives to this flame the greater portion of its present light. But the heat of the flame is enormous. Cast iron fuses at a temperature of 2,000 Fahr; while the temperature of the oxyhydrogen flame is 6,000 Fahr. A piece of platinum is heated to vivid redness, at a distance of two inches beyond the visible termination of the flame. The vapour which produces incandescence is here absolutely dark. In the flame itself the platinum is raised to dazzling whiteness, and is even pierced by the flame. When this flame impinges on a piece of lime, we have the dazzling Drummond light. But the light is here due to the fact that when it impinges upon the solid body, the vibrations excited in that body by the flame are of periods different from its own.

Thus far we have fixed our attention on atoms and molecules in a state of vibration, and surrounded by a medium which accepts their vibrations, and transmits them through s.p.a.ce. But suppose the waves generated by one system of molecules to impinge upon another system, how will the waves be affected? Will they be stopped, or will they be permitted to pa.s.s? Will they transfer their motion to the molecules on which they impinge, or will they glide round the molecules, through the intermolecular s.p.a.ces, and thus escape?

The answer to this question depends upon a condition which may be beautifully exemplified by an experiment on sound. These two tuning-forks are tuned absolutely alike. They vibrate with the same rapidity, and, mounted thus upon their resonant cases, you hear them loudly sounding the same musical note. Stopping one of the forks, I throw the other into strong vibration, and bring that other near the silent fork, but not into contact with it. Allowing them to continue in this position for four or five seconds, and then stopping the vibrating fork, the sound does not cease. The second fork has taken up the vibrations of its neighbour, and is now sounding in its turn.

Dismounting one of the forks, and permitting the other to remain upon its stand, I throw the dismounted fork into strong vibration. You cannot hear it sound. Detached from its case, the amount of motion which it can communicate to the air is too small to be sensible at any distance. When the dismounted fork is brought close to the mounted one, but not into actual contact with it, out of the silence rises a mellow sound. Whence comes it? From the vibrations which have been transferred from the dismounted fork to the mounted one.

That the motion should thus transfer itself through the air it is necessary that the two forks should be in perfect unison. If a morsel of wax not larger than a pea be placed on one of the forks, it is rendered thereby powerless to affect, or to be affected by, the other.

It is easy to understand this experiment. The pulses of the one fork can affect the other, because they are _perfectly timed_. A single pulse causes the p.r.o.ng of the silent fork to vibrate through an infinitesimal s.p.a.ce. But just as it has completed this small vibration another pulse is ready to strike it. Thus, the impulses add themselves together. In the five seconds during which the forks were held near each other, the vibrating fork sent 1,280 waves against its neighbour and those 1,280 shocks, all delivered at the proper moment, all, as I have said, perfectly timed, have given such strength to the vibrations of the mounted fork as to render them audible to all.

Another curious ill.u.s.tration of the influence of synchronism on musical vibrations, is this: Three small gas-flames are inserted into three gla.s.s tubes of different lengths. Each of these flames can be caused to emit a musical note, the pitch of which is determined by the length of the tube surrounding the flame. The shorter the tube the higher is the pitch. The flames are now silent within their respective tubes, but each of them can be caused to respond to a proper note sounded anywhere in this room. With an instrument called a syren, a powerful musical note, of gradually increasing pitch, can be produced. Beginning with a low note, and ascending gradually to a higher one, we finally attain the pitch of the flame in the longest tube. The moment it is reached, the flame bursts into song. The other flames are still silent within their tubes. But by urging the instrument on to higher notes, the second flame is started, and the third alone remains. A still higher note starts it also. Thus, as the sound of the syren rises gradually in pitch, it awakens every flame in pa.s.sing, by striking it with a series of waves whose periods of recurrence are similar to its own.

Now the wave-motion from the syren is in part taken up by the flame which synchronises with the waves; and were these waves to impinge upon a mult.i.tude of flames, instead of upon one flame only, the transference might be so great as to absorb the whole of the original wave motion. Let us apply these facts to radiant heat. This blue flame is the flame of carbonic oxide; this transparent gas is carbonic acid gas. In the blue flame we have carbonic acid intensely heated, or, in other words, in a state of intense vibration. It thus resembles the sounding fork, while this cold carbonic acid resembles the silent one. What is the consequence? Through the synchronism of the hot and cold gas, the waves emitted by the former are intercepted by the latter, the transmission of the radiant heat being thus prevented. The cold gas is intensely opaque to the radiation from this particular flame, though highly transparent to heat of every other kind. We are here manifestly dealing with that great principle which lies at the basis of spectrum a.n.a.lysis, and which has enabled scientific men to determine the substances of which the sun, the stars, and even the nebulae are composed; the principle, namely, that a body which is competent to emit any ray, whether of heat or light, is competent in the same degree to absorb that ray. The absorption depends on the synchronism existing between the vibrations of the toms from which the rays, or more correctly the waves, sue, and those of the atoms on which they impinge.

To its almost total incompetence to emit white light, aqueous vapour adds a similar incompetence to absorb bite light. It cannot, for example, absorb the luminous rays of the sun, though it can absorb the non-luminous rays of the earth. This incompetence of the vapour to absorb luminous rays is shared by water and ice--in fact, by all really transparent substances. Their transparency is due to their inability to absorb luminous rays. The molecules of such substances are in dissonance with luminous waves; and hence such waves pa.s.s through transparent bodies without disturbing the molecular rest. A purely luminous beam, however intense may be its heat, is sensibly incompetent to melt ice. We can, for example, converge a powerful luminous beam upon a surface covered with h.o.a.r frost, without melting a single spicula of the crystals. How then, it may be asked, are the snows of the Alps swept away by the sunshine of summer? I answer, they are not swept away by sunshine at all, but by rays which have no sunshine whatever in them. The luminous rays of the sun fall upon the snow-fields and are flashed in echoes from crystal to crystal, but they find next to no lodgment within the crystals. They are hardly at all absorbed, and hence they cannot produce fusion. But a body of powerful dark rays is emitted by the sun; and it is these that cause the glaciers to shrink and the snows to disappear; it is they that fill the banks of the Arve and Arveyron, and liberate from their frozen captivity the Rhone and the Rhine.

Placing a concave silvered mirror behind the electric light its rays are converged to a focus of dazzling brilliancy. Placing in the path of the rays, between the light and the focus, a vessel of water, and introducing at the focus a piece of ice, the ice is not melted by the concentrated beam. Matches, at the same place, are ignited, and wood is set on fire. The powerful heat, then, of this luminous beam is incompetent to melt the ice. On withdrawing the cell of water, the ice immediately liquefies, and the water trickles from it in drops.

Reintroducing the cell of water, the fusion is arrested, and the drops cease to fall. The transparent water of the cell exerts no sensible absorption on the luminous rays, still it withdraws something from the beam, which, when permitted to act, is competent to melt the ice. This something is the dark radiation of the electric light. Again, I place a slab of pure ice in front of the electric lamp; send a luminous beam first through our cell of water and then through the ice. By means of a lens an image of the slab is cast upon a white screen. The beam, sifted by the water, has little power upon the ice. But observe what occurs when the water is removed; we have here a star and there a star, each star resembling a flower of six petals, and growing visibly larger before our eyes. As the leaves enlarge, their edges become serrated, but there is no deviation from the six-rayed type. We have here, in fact, the crystallisation of the ice reversed by the invisible rays of the electric beam. They take the molecules down in this wonderful way, and reveal to us the exquisite atomic structure of the substance with which Nature every winter roofs our ponds and lakes.

Numberless effects, apparently anomalous, might be adduced in ill.u.s.tration of the action of these lightless rays. These two powders, for example, are both white, and undistinguishable from each other by the eye. The luminous rays of the sun are unabsorbed by both--from such rays these powders acquire no heat; still one of them, sugar, is heated so highly by the concentrated beam of the electric lamp, that it first smokes and then violently inflames, while the other substance, salt, is barely warmed at the focus. Placing two perfectly transparent liquids in test-tubes at the focus, one of them boils in a couple of seconds, while the other, in a similar position, is hardly warmed. The boiling-point of the first liquid is 78C, which is speedily reached; that of the second liquid is only 48C, which is never reached at all. These anomalies are entirely due to the unseen element which mingles with the luminous rays of the electric beam, and indeed const.i.tutes 90 per cent. of its calorific power.

A substance, as many of you know, has been discovered, by which these dark rays may be detached from the total emission of the electric lamp. This ray-filter is a liquid, black as pitch to the luminous, but bright as a diamond to the non-luminous, radiation. It mercilessly cuts off the former, but allows the latter free transmission. When these invisible rays are brought to a focus, at a distance of several feet from the electric lamp, the dark rays form an invisible image of their source. By proper means, this image may be transformed into a visible one of dazzling brightness. It might, moreover, be shown, if time permitted, how, out of those perfectly dark rays, could be extracted, by a process of trans.m.u.tation, all the colours of the solar spectrum. It might also be proved that those rays, powerful as they are, and sufficient to fuse many metals, can be permitted to enter the eye, and to break upon the retina, without producing the least luminous impression.