A Treatise on Physiology and Hygiene - Part 12
Library

Part 12

[Sidenote: 10. If coagulation were impossible? How is it in fact?]

10. In this law of the coagulation of the blood is our safeguard against death by haemorrhage, or against undue loss of blood. If coagulation were impossible, the {105} slightest injury in drawing blood would prove fatal.

Whereas now, in vastly the larger proportion of cases, bleeding ceases spontaneously, because the blood, as it coagulates, stops the mouths of the injured blood-vessels. In another cla.s.s of cases, where larger vessels are cut or torn, it is simply necessary to close them by a temporary pressure; for in a few minutes the clot will form and seal them up. In still more serious cases, where the blood-vessel is of large size, the surgeon is obliged to tie a "ligature" about it, and thus prevent the force of the blood-current from washing away the clots, which, forming within and around the vessel, would close it effectually.

[Sidenote: 11. What is worthy of remark? Coagulation of the blood of inferior animals? Of the blood of birds?]

11. It is worthy of remark that this peculiarity is early implanted in the blood, even before birth, and in advance of any existing necessity for it; thus antic.i.p.ating and guarding against danger. But this is not all. Of most of the inferior animals, which, as compared with man, are quite helpless, the blood coagulates more rapidly, and in the case of the birds, almost instantly. The relative composition of fluid and coagulated blood may be thus represented:

_Fluid Blood._ _Coagulated Blood._

Plasma----------Serum---------Serum --------Fibrin-------- Corpuscles------Corpuscles-------Clot.

[Sidenote: 12. The blood, as a provider and purifier? What uses does the blood subserve? Experiments? Transfusion?]

12. THE USES OF THE BLOOD.--The blood is the great provider and purifier of the body. It both carries new materials to all the tissues, and removes the worn out particles of matter. This is effected by the plasma. It both conveys oxygen and removes carbonic acid. This is done through the corpuscles. Some singular experiments have {106} been tried to ill.u.s.trate the life-giving power of the blood. An animal that has bled so freely as to be at the point of dying, is promptly brought back to life by an operation called transfusion, by which fresh blood from a living animal is injected into the blood-vessels of his body.

[Sidenote: 13. The case of the deaf and feeble dog? Horse? Dead dog?]

13. It is related that a dog, deaf and feeble from age, had hearing and activity restored to him by the introduction into his veins of blood taken from a young dog; and, that a horse, twenty-six years old, having received the blood of four lambs acquired new vigor. And further, that a dog, just dead from an acute disease, was so far revived by transfusion, as to be able to stand and make a few movements.

[Sidenote: 14. Transfusion, as a fashionable remedy? What further of transfusion?]

14. Transfusion has been practised upon man. At one time, shortly after Harvey's discovery of the "Circulation of the Blood," it became quite a fashionable remedy, it being thought possible by it to cure all forms of disease, and even to make the old young again. But these claims were soon found extravagant, and many unhappy accidents occurred in its practice; so that being forbidden by government and interdicted by the Pope, it rapidly fell into disuse. At the present time, however, it is sometimes resorted to in extreme cases, when there has been a great and rapid loss of blood; and there are upon record several instances where, other means having failed, life has been restored or prolonged by the operation of transfusion.

[Sidenote: 15. The seat of the reviving power of the blood? What further is related?]

15. This reviving power of the blood seems to reside in the corpuscles; for transfusion, when attempted to be performed with the serum alone, has, in every case, proved fruitless. Now, though so much depends upon the blood and its corpuscles, it is a mistake to suppose that in them alone is the seat of life, or that they are, in an exclusive manner, alive. All the organs and parts of the body are mutually dependent one upon the other; and the complete usefulness {107} of the blood, or of any other part, flows out of the harmonious action of all the parts.

[Sidenote: 16. Changes in the blood? What further is stated?]

16. CHANGE OF COLOR.--The blood undergoes a variety of changes in its journey through the system. As it visits the different organs it both gives out and takes up materials. In one place it is enriched, in another it is impoverished. By reason of these alterations in its composition, the blood also changes its color. In one part of the body it is bright red, or arterial; in another it is dark blue, or venous. In the former case it is pure and fit for the support of the tissues; in the latter, it is impure and charged with effete materials. (The details of the change from dark to bright will be given in the chapter on Respiration.)

[Sidenote: 17. Motion of the blood? What is meant by the circulation of the blood? How confined? Discovery made by Harvey?]

17. CIRCULATION.--The blood is in constant motion during life. From the heart, as a centre, a current is always setting toward the different organs; and from these organs a current is constantly returning to the heart. In this way a ceaseless circular movement is kept up, which is called the Circulation of the Blood. This stream of the vital fluid is confined to certain fixed channels, the blood-vessels. Those branching from the heart are the arteries; those converging to it are the veins. The true course of the blood was unknown before the beginning of the seventeenth century. In 1619 it was discovered by the ill.u.s.trious William Harvey. Like many other great discoverers, he suffered persecution and loss, but unlike some of them, he was fortunate enough to conquer and survive opposition. He lived long enough to see his discovery universally accepted, and himself honored as a benefactor of mankind.

{108}

[Ill.u.s.tration: FIG. 27.--THE ORGANS OF CIRCULATION.]

{109} [Ill.u.s.tration: FIG. 28.--THE HEART AND LARGE VESSELS.

A, Right Ventricle. B, Left Ventricle. C, Right Auricle. D, Left Auricle.

E, Aorta. F, Pulmonary Artery.]

[Sidenote: 18. Office of the heart? Location of the heart? Its beat? Its shape? Protection to the heart? What else is said in relation to the heart?]

18. THE HEART.--The heart is the central engine of the circulation. In this wonderful little organ, hardly larger than a man's fist, resides that sleepless force by which, during the whole of life, the current of the blood is kept in motion. It is placed in the middle and front part of the chest, inclining to the left side. The heartbeat may be felt and heard between the fifth and sixth ribs, near the breast-bone. The shape of the heart is conical, with the apex or point downward and in front. The base, which is upward, is attached so as to hold it securely in its place, while the apex is freely moveable. In order that loss of power from friction may be obviated, the heart is enclosed between two layers of serous membrane, which forms a kind of sac. This membrane is as smooth as satin, and itself secretes a fluid in sufficient quant.i.ties to keep it at all times well lubricated. The lining membrane of the heart, likewise, is extremely delicate and smooth.

{110} [Ill.u.s.tration: FIG. 29.--SECTION OF THE HEART.

A, Right Ventricle. B, Left Ventricle. C, Right Auricle. D, Left Auricle.

E, F, Inlets to the Ventricles. G, Pulmonary Artery. H, Aorta.]

[Sidenote: 19. Formation of the heart? Right and left heart?]

19. THE CAVITIES OF THE HEART.--The heart is hollow, and so part.i.tioned as to contain four chambers or cavities; two at the base, known as the _auricles_, from a fancied resemblance to the ear of a dog, and two at the apex or point, called _ventricles_. An auricle and a ventricle on the same side, communicate with each other, but there is no opening from side to side. It is customary to regard the heart as a double organ, and to speak of its division into the right and left heart. For while both halves act together in point of time, each half sustains an entirely distinct portion of the labor of the circulation. Thus, the right heart always carries the dark or venous blood, and the left always circulates the bright or arterial blood.

[Sidenote: 20. Capacity of the chambers of the heart? What wise provision is mentioned? The auricles?]

20. If we examine the heart, we at once notice that though its various chambers have about the same capacity, the walls of the ventricles are thicker and stronger than those of the auricles. This is a wise provision, for it is by the powerful action of the former that the blood is forced to the most remote regions of the body. The auricles, on the contrary, need much less power, for they simply discharge their contents into the cavities of the heart near at hand and below them--into the ventricles. {111}

[Sidenote: 21. Substance of the heart? Its fibres? Its movements? The advantage of such movements? Action of the heart? Its period of repose?]

21. ACTION OF THE HEART.--The substance of the heart is of a deep red color, and its fibres resemble those of the voluntary muscles by which we move our bodies. But the heart's movements are entirely involuntary. The advantage of this is evident; for if it depended upon us to will each movement, our entire attention would be thus engaged, and we would find no time for study, pleasure, or even sleep. The action of the heart consists in alternate contractions and dilatations. During contraction the walls come forcibly together, and thus drive out the blood. In dilatation, they expand and receive a renewed supply. These movements are called _systole_ and _diastole_. The latter may be called the heart's period of repose; and although it lasts only during two-fifths of a heart-beat, or about a third of a second, yet during the day it amounts to more than nine hours of total rest.

[Sidenote: 22. Remarkable property of the tissue of the heart? How shown?

How interesting? In cold-blooded animals? Heart of a turtle? Of a frog?

Alligator?]

22. A remarkable property of the tissue of the heart is its intense vitality. For while it is more constantly active than any other organ of the body, it is the last to part with its vital energy. This is especially interesting in view of the fact that after life is apparently extinguished, as from drowning, or poisoning by chloroform, there yet lingers a spark of vitality in the heart, which, by continued effort, may be fanned into a flame so as to revivify the whole body. In cold-blooded animals this irritability of the heart is especially remarkable. The heart of a turtle will pulsate, and the blood circulate for a week after its head has been cut off; and the heart will throb regularly many hours after being cut out from the creature's chest. The heart of a frog or serpent, separated entirely from the body, will contract at the end of ten or twelve hours: that of an alligator has been known to beat twenty-eight hours after the death of the animal. {112}

[Sidenote: 23. Course of the blood through the heart? Course of heart-currents?]

23. Pa.s.sAGE OF THE BLOOD THROUGH THE HEART.--Let us now trace the course of the blood through the several cavities of the heart. In the first place, the venous blood, rendered dark and impure by contact with the changing tissues of the body, returns to the right heart by the veins. It enters and fills the right auricle during its dilatation: the auricle then contracts and fills the right ventricle. Almost instantly, the ventricle contracts forcibly and hurries the blood along the great artery of the lungs, to be purified in those organs. Secondly, having completed the circuit of the lungs, the pure and bright arterial blood enters the left auricle. This now contracts and fills the left ventricle, which cavity, in its turn, contracts and sends the blood forth on its journey again through the system. This general direction from right to left is the uniform and undeviating course of heart-currents.

[Sidenote: 24. Openings of the ventricles? How guarded? How do the valves operate? The consequence? Heart-sounds?]

24. The mechanism which enforces and regulates it, is as simple as it is beautiful. Each ventricle has two openings, an inlet and an outlet, each of which is guarded by strong curtains, or valves. These valves open freely to admit the blood entering from the right, but close inflexibly against its return. Thus, when the auricle contracts, the inlet valve opens; but as soon as the ventricle begins to contract, it closes promptly. The contents are then, so to speak, cornered, and have but one avenue of escape, that through the outlet valve into the arteries beyond. As soon as the ventricle begins to dilate again, this valve shuts tightly and obstructs the pa.s.sage.

The closing of these valves occasions the two heart-sounds, which we hear at the front of the chest.

[Sidenote: 25. Heart-beats? The heart as a susceptible organ? Heat, exercise, etc.? Posture?]

25. FREQUENCY OF THE HEART'S ACTION.--The alternation of contraction and dilation const.i.tutes the {113} heartbeats. These follow each other not only with great regularity, but with great rapidity. The average number in an adult man is about seventy-two in a minute. But the heart is a susceptible organ, and many circ.u.mstances affect its rate of action. Heat, exercise, and food will increase its action, as cold, fasting, and sleep will decrease it. Posture, too, has a curious influence; for if while sitting, the beats of the heart number seventy-one; standing erect will increase them to eighty-one, and lying down will lower them to sixty-six.

[Sidenote: 26. Mental emotions? Sudden excitement? Excessive joy? The heart-beat rate? Bonaparte and Wellington?]

26. The modifying influence of mental emotions is very powerful. Sudden excitement of feeling will cause the heart to palpitate, or throb violently. Depressing emotions sometimes temporarily interrupt its movements, and the person faints in consequence. Excessive joy, grief, or fear, has occasionally suspended the heart's action entirely, and thus caused death. The rate of the heart-beat may be naturally above or below seventy-two. Thus it is stated that the pulse of the savage is always slower than that of the civilized man. Bonaparte and Wellington were very much alike in their heart's pulsations, which were less than fifty in the case of each.

[Sidenote: 27. Average number of heart-beats? In one hour? Year? Lifetime?]

27. ACTIVITY OF THE HEART.--The average number of heart-beats during a lifetime may be considered as at the rate of seventy-two per minute, although this estimate is probably low; for during several years of early life the rate is above one hundred a minute. In one hour, then, the heart pulsates four thousand times; in a day, one hundred thousand times; and in a year, nearly thirty-eight million times. If we compute the number during a lifetime, thirty-nine years being the present average longevity of civilized mankind, we obtain as the vast aggregate, fourteen hundred millions of pulsations. {114}

[Sidenote: 28. Amount of blood expelled? Theories of the ancients?]

28. Again, if we estimate the amount of blood expelled by each contraction of the ventricles, at four ounces, then the weight of the blood moved during one minute will amount to eighteen pounds. In a day it will be about twelve tons; in a year, four thousand tons; and in the course of a lifetime, over one hundred and fifty thousand tons. These large figures indicate, in some measure, the immense labor necessary to carry on the interior and vital operations of our bodies. In this connection, we call to mind the fanciful theories of the ancients in reference to the uses of the heart. They regarded it as the abode of the soul, and the source of the n.o.bler emotions--bravery, generosity, mercy, and love. The words courage and cordiality are derived from a Latin word signifying heart. Many other words and phrases, as hearty, heart-felt, to learn by heart, and large-hearted, show how tenaciously these exploded opinions have fastened themselves upon our language.

[Sidenote: 29. The tendency at the present time? Why is this view inadequate?]

29. At the present time the tendency is to ascribe purely mechanical functions to the heart. This view, like the older one, is inadequate; for it expresses only a small part of our knowledge of this organ. The heart is unlike a simple machine, because its motive power is not applied from without, but resides in its own substance. Moreover, it repairs its own waste, it lubricates its own action, and it modifies its movements according to the varying needs of the system. It is more than a mere force-pump, just as the stomach is something more than a crucible, and the eye something more than an optical instrument.