A Practical Physiology - Part 26
Library

Part 26

[Ill.u.s.tration: Fig. 101.--Concave or Adherent Surface of the Nail.

A, border of the root; B, whitish portion of semilunar shape (the lunula); C, body of nail. The continuous line around border represents the free edge.

[Ill.u.s.tration: Fig. 102.--Nail in Position.

A, section of cutaneous fold (B) turned back to show the root of the nail; B, cutaneous fold covering the root of the nail; C, semi lunar whitish portion (lunula); D, free border.

With few exceptions every portion of the skin is provided with sweat glands, but they are not equally distributed over the body. They are fewest in the back and neck, where it is estimated they average 400 to the square inch. They are thickest in the palms of the hands, where they amount to nearly 3000 to each square inch. These minute openings occur in the ridges of the skin, and may be easily seen with a hand lens. The length of a tube when straightened is about 1/4 of an inch. The total number in the body is estimated at about 2,500,000, thus making the entire length of the tubes devoted to the secretion of sweat about 10 miles.

240. Nature and Properties of Sweat. The sweat is a turbid, saltish fluid with a feeble but characteristic odor due to certain volatile fatty acids. Urea is always present in small quant.i.ties, and its proportion may be largely increased when there is deficiency of elimination by the kidneys. Thus it is often observed that the sweat is more abundant when the kidneys are inactive, and the reverse is true. This explains the increased excretion of the kidneys in cold weather. Of the inorganic const.i.tuents of sweat, common salt is the largest and most important. Some carbon dioxid pa.s.ses out through the skin, but not more than 1/50 as much as escapes by the lungs.

The sweat ordinarily pa.s.ses off as vapor. If there is no obvious perspiration we must not infer that the skin is inactive, since sweat is continually pa.s.sing from the surface, though often it may not be apparent.

On an average from 1-1/2 to 4 pounds of sweat are eliminated daily from the skin in the form of vapor. This is double the amount excreted by the lungs, and averages about 1/67 of the weight of the body.

The visible sweat, or sensible perspiration, becomes abundant during active exercise, after copious drinking of cold water, on taking certain drugs, and when the body is exposed to excessive warmth. Forming more rapidly than it evaporates it collects in drops on the surface. The disagreeable sensations produced by humid weather result from the fact that the atmosphere is so loaded with vapor that the moisture of the skin is slowly removed by evaporation.

Experiment 124. Study the openings of the sweat glands with the aid of a strong magnifying gla.s.s. They are conveniently examined on the palms.

A man's weight may be considerably reduced within a short time by loss through the perspiration alone. This may explain to some extent the weakening effect of profuse perspiration, as from night sweats of consumption, convalescence from typhoid fever, or the artificial sweating from taking certain drugs.

241. The Skin as a Regulator of the Temperature of the Body. We thus learn that the skin covers and protects the more delicate structures beneath it; and that it also serves as an important organ of excretion. By means of the sweat the skin performs a third and a most important function, _viz_., that of regulating the temperature of the body.

The blood-vessels of the skin, like those of other parts of the body, are under the control of the nervous system, which regulates their diameter.

If the nervous control be relaxed, the blood-vessels dilate, more blood flows through them, and more material is brought to the glands of the skin to be acted upon. External warmth relaxes the skin and its blood-vessels.

There results an increased flow of blood to the skin, with increased perspiration. External cold, on the other hand, contracts the skin and its blood-vessels, producing a diminished supply of blood and a diminished amount of sweat.

Now, it is a law of physics that the change from liquid to vapor involves a loss of heat. A few drops of ether or of any volatile liquid placed on the skin, produce a marked sense of coldness, because the heat necessary to change the liquid into vapor has been drawn rapidly from the skin. This principle holds good for every particle of sweat that reaches the mouth of a sweat gland. As the sweat evaporates, it absorbs a certain amount of heat, and cools the body to that extent.

242. How the Action of the Skin may be Modified. After profuse sweating we feel chilly from the evaporation of a large amount of moisture, which rapidly cools the surface. When the weather is very warm the evaporation tends to prevent the bodily temperature from rising. On the other hand, if the weather be cold, much less sweat is produced, the loss of heat from the body is greatly lessened, and its temperature prevented from falling. Thus it is plain why medicine is given and other efforts are made to sweat the fever patient. The increased activity of the skin helps to reduce the bodily heat.

The sweat glands are under the control of certain nerve fibers originating in the spinal cord, and are not necessarily excited to action by an increased flow of blood through the skin. In other words, the sweat glands may be stimulated to increased action both by an increased flow of blood, and also by reflex action upon the vaso-dilator nerves of the parts. These two agencies, while working in harmony through the vaso-dilators, produce phenomena which are essentially independent of each other. Thus a strong emotion, like fear, may cause a profuse sweat to break out, with cold, pallid skin. During a fever the skin may be hot, and its vessels full of blood, and yet there may be no perspiration.

[Ill.u.s.tration: Fig. 103.--Papillae of the Skin of the Palm of the Hand.

In each papilla are seen vascular loops (dark lines) running up from the vascular network below, the tactile corpuscles with their nerve branches (white lines) which supply the papillae.]

The skin may have important uses with which we are not yet acquainted.

Death ensues when the heat of the body has been reduced to about 70 F., and suppression of the action of the skin always produces a lowering of the temperature. Warm-blooded animals usually die when more than half of the general surface has been varnished. Superficial burns which involve a large part of the surface of the body, generally have a fatal result due to shock.

If the skin be covered with some air-tight substance like a coating of varnish, its functions are completely arrested. The bodily heat falls very rapidly. Symptoms of blood-poisoning arise, and death soon ensues. The reason is not clearly known, unless it be from the sudden retention of poisonous exhalations.

243. The Skin and the Kidneys. There is a close relationship between the skin and the kidneys, as both excrete organic and saline matter. In hot weather, or in conditions producing great activity of the skin, the amount of water excreted by the kidneys is diminished. This is shown in the case of firemen, stokers, bakers, and others who are exposed to great heat, and drink heavily and sweat profusely, but do not have a relative increase in the functions of the kidneys. In cool weather, when the skin is less active, a large amount of water is excreted by the kidneys, as is shown by the experience of those who drive a long distance in severe weather, or who have caught a sudden cold.

[Ill.u.s.tration: Fig. 104.--Magnified View of a Sweat Gland with its Duct.

The convoluted gland is seen surrounded with big fat-cells, and may be traced through the dermis to its outlet in the h.o.r.n.y layers of the epidermis.]

244. Absorbent Powers of the Skin. The skin serves to some extent as an organ for absorption. It is capable of absorbing certain substances to which it is freely exposed. Ointments rubbed in, are absorbed by the lymphatics in those parts where the skin is thin, as in the bend of the elbow or knee, and in the armpits. Physicians use medicated ointments in this way, when they wish to secure prompt and efficient results. Feeble infants often grow more vigorous by having their skin rubbed vigorously daily with olive oil.

A slight amount of water is absorbed in bathing. Sailors deprived of fresh water have been able to allay partially their intense thirst by soaking their clothing in salt water. The extent to which absorption occurs through the healthy skin is, however, quite limited. If the outer skin be removed from parts of the body, the exposed surface absorbs rapidly. Various substances may thus be absorbed, and rapidly pa.s.sed into the blood. When the physician wishes remedies to act through the skin, he sometimes raises a small blister, and dusts over the surface some drug, a fine powder, like morphine.

The part played by the skin as an organ of touch will be considered in sections 314 and 315.

Experiment 125. _To ill.u.s.trate the sense of temperature_. Ask the person to close his eyes. Use two test tubes, one filled with cold and the other with hot water, or two spoons, one hot and one cold. Apply each to different parts of the surface, and ask the person whether the touching body is hot or cold. Test roughly the sensibility of different parts of the body with cold and warm metallic-pointed rods.

Experiment 126. Touch fur, wood, and metal. The metal feels coldest, although all the objects are at the same temperature. Why?

Experiment 127. Plunge the hand into water at about 97F. One experiences a feeling of heat. Then plunge it into water at about 86F.; at first it feels cold, because heat is abstracted from the hand. Plunge the other hand direct into water at 86F. without previously placing it in water at 97F.,--it will feel pleasantly warm.

Experiment 128. _To ill.u.s.trate warm and cold spots_. With a blunt metallic point, touch different parts of the skin. Certain points excite the sensation of warmth, others of cold, although the temperatures of the skin and of the instrument remain constant.

245. Necessity for Personal Cleanliness. It is evident that the skin, with its myriads of blood-vessels, nerves, and sweat and oil glands, is an exceedingly complicated and important structure. The surface is continually casting off perspiration, oily material, and dead scales. By friction and regular bathing we get rid of these waste materials. If this be not thoroughly done, the oily secretion holds the particles of waste substances to the surface of the body, while dust and dirt collect, and form a layer upon the skin. When we remember that this dirt consists of a great variety of dust particles, poisonous matters, and sometimes germs of disease, we may well be impressed with the necessity of personal cleanliness.

This layer of foreign matter on the skin is in several ways injurious to health. It clogs the pores and r.e.t.a.r.ds perspiration, thus checking the proper action of the skin as one of the chief means of getting rid of the waste matters of the body. Hence additional work is thrown upon other organs, chiefly the lungs and the kidneys, which already have enough to do. This extra work they can do for only a short time. Sooner or later they become disordered, and illness follows. Moreover, as this unwholesome layer is a fertile soil in which bacteria may develop, many skin diseases may result from this neglect. It is also highly probable that germs of disease thus adherent to the skin may then be absorbed into the system.

Parasitic skin diseases are thus greatly favored by the presence of an unclean skin. It is also a fact that uncleanly people are more liable to take cold than those who bathe often.

The importance of cleanliness would thus seem too apparent to need special mention, were it not that the habit is so much neglected. The old and excellent definition that dirt is suitable matter, but in the wrong place, suggests that the place should be changed. This can be done only by regular habits of personal cleanliness, not only of the skin, the hair, the teeth, the nails, and the clothing, but also by the rigid observance of a proper system in daily living.

246. Baths and Bathing. In bathing we have two distinct objects in view,--to keep the skin clean and to impart vigor. These are closely related, for to remove from the body worn-out material, which tends to injure it, is a direct means of giving vigor to all the tissues. Thus a cold bath acts upon the nervous system, and calls out, in response to the temporary abstraction of heat, a freer play of the general vital powers.

Bathing is so useful, both locally and const.i.tutionally, that it should be practiced to such an extent as experience proves to be beneficial. For the general surface, the use of hot water once a week fulfills the demands of cleanliness, unless in special occupations.

Whether we should bathe in hot or cold water depends upon circ.u.mstances.

Most persons, especially the young and vigorous, soon become accustomed to cool, and even cold water baths, at all seasons of the year.

The hot bath should be taken at night before going to bed, as in the morning there is usually more risk of taking cold. The body is readily chilled, if exposed to cold when the blood-vessels of the skin have been relaxed by heat. Hot baths, besides their use for the purposes of cleanliness, have a sedative influence upon the nervous system, tending to allay restlessness and weariness. They are excellent after severe physical or mental work, and give a feeling of restful comfort like that of sleep.

[Ill.u.s.tration: Fig. 105.--Epithelial Cells from the Sweat Glands. The cells are very distinct, with nuclei enclosing pigmentary granulations (Magnified 350 times)]

Cold baths are less cleansing than hot, but serve as an excellent tonic and stimulant to the bodily functions. The best and most convenient time for a cold bath is in the morning, immediately after rising. To the healthy and vigorous, it is, if taken at this time, with proper precautions, a most agreeable and healthful luxury. The sensation of chilliness first felt is caused by the contraction of the skin and its blood-vessels, so that the blood is forced back, as it were, into the deeper parts of the body. This stimulates the nervous system, the breathing becomes quicker and deeper, the heart beats more vigorously, and, as a consequence, the warm blood is sent back to the skin with increased force. This is known as the stage of reaction, which is best increased by friction with a rough towel. This should produce the pleasant feeling of a warm glow all over the body.

A cold bath which is not followed by reaction is likely to do more harm than good. The lack of this reaction may be due to the water being too cold, the bath too prolonged, or to the bather being in a low condition of health. In brief, the ruddy glow which follows a cold bath is the main secret of its favorable influence.

The temperature of the water should be adapted to the age and strength of the bather. The young and robust can safely endure cold baths, that would be of no benefit but indeed an injury to those of greater age or of less vigorous conditions of health. After taking a bath the skin should be rapidly and vigorously rubbed dry with a rough towel, and the clothing at once put on.

247. Rules and Precautions in Bathing. Bathing in cold water should not be indulged in after severe exercise or great fatigue, whether we are heated or not. Serious results have ensued from cold baths when the body is in a state of exhaustion or of profuse perspiration. A daily cold bath when the body is comfortably warm, is a safe tonic for almost all persons during the summer months, and tends especially to restore the appet.i.te.

Cold baths, taken regularly, render persons who are susceptible to colds much less liable to them, and less likely to be disturbed by sudden changes of temperature. Persons suffering from heart disease or from chronic disease of an important organ should not indulge in frequent cold bathing except by medical advice. Owing to the relaxing nature of hot baths, persons with weak hearts or suffering from debility may faint while taking them.

Outdoor bathing should not be taken for at least an hour after a full meal, and except for the robust it is not prudent to bathe with the stomach empty, especially before breakfast. It is a wise rule, in outdoor or sea bathing, to come out of the water as soon as the glow of reaction is felt. It is often advisable not to apply cold water very freely to the head. Tepid or even hot water is preferable, especially by those subject to severe mental strain. But it is often a source of great relief during mental strain to bathe the face, neck, and chest freely at bedtime with cold water. It often proves efficient at night in calming the sleeplessness which results from mental labor.

Hot baths, if taken at bedtime, are often serviceable in preventing a threatened cold or cutting it short, the patient going immediately to bed, with extra clothing and hot drinks. The free perspiration induced helps to break up the cold.

Salt water acts more as a stimulant to the skin than fresh water.

Salt-water bathing is refreshing and invigorating for those who are healthy, but the bather should come out of the water the moment there is the slightest feeling of chilliness. The practice of bathing in salt water more than once a day is unhealthful, and even dangerous. Only the strongest can sustain so severe a tax on their power of endurance. Sea bathing is beneficial in many ways for children, as their skin reacts well after it. In all cases, brisk rubbing with a rough towel should be had afterwards.

[Ill.u.s.tration: Fig. 106.--Magnified Section of the Lower Portion of a Hair and Hair-Follicle.