The life of Isambard Kingdom Brunel, Civil Engineer - Part 51
Library

Part 51

I have no other object to serve now; but after the clear proof that I was correct in the opinion I shared with so many other persons of the entire inability of any of the present floating ships, boats, or war engines to cope with any moderately constructed and well-armed land battery, I think it right once more, and this time more formally, to urge upon Government the consideration of the construction of armaments mechanically constructed and properly fitted for the special object. I beg to say that I do not mean a consideration in the ordinary mode, by the able and practical, but still executive officers of departments, whether engineers or ship-builders, because I believe that I must be myself, from my practical experience in this particular branch, at least as competent, if not more so, to judge in questions of mechanical construction, whether it be the forging or casting of a gun of large dimensions, or the construction of a vessel fit for navigation and capable of resisting shot, or the best mode of propelling such a vessel--on all which branches I have had much and tolerably successful practice; but I ask on public grounds for the deliberate consideration by men of judgment and experience in the military branch of the subject, such as the attack upon a fortified place, of which I cannot pretend to be a competent judge, and by men in a position to be able to express freely their independent opinions of the advantages that might be attained by the principle I propose, if capable of being successfully carried out.

Although the want of efficient gun-boats was then severely felt, this letter appears to have produced no effect upon the Board of Admiralty.

But the friend who had originally brought the matter under the notice of the Board took the bold step of writing to Lord Palmerston, and acquainting him with what had pa.s.sed.

Lord Palmerston at once saw the importance of investigating the subject, and sent for Mr. Brunel, who explained the plans to him. Lord Palmerston then asked him to see the officials at the Admiralty. Mr. Brunel did so; but great delay followed. It was, however, unimportant, as hostilities soon afterwards terminated, and there was no further need of gun-boats, good or bad.

This project did not exist only in the outline in which it is described in the memorandum given above. Mr. Brunel had worked out all the calculations of displacement, &c., and had made designs and models for the boat and its various appliances, and had been for some months in constant communication with Mr. W. G. Armstrong upon the form and construction of the gun.

This will be a fitting place to mention that in 1855 Captain Cowper Coles, C.B., showed Mr. Brunel the designs for his shot-proof raft, the principle of which was afterwards developed in the turret ship. Mr.

Brunel gave Captain Coles the benefit of his advice on the various questions involved, and allowed him to use the services of his princ.i.p.al draughtsman, and to have the drawings got out in his office without expense.

Captain Coles, in a lecture which he delivered at the United Service Inst.i.tution on June 29, 1860, warmly acknowledged the obligations he was under to Mr. Brunel for this act of kindness and generosity, and said that it had greatly encouraged him to persevere in bringing his plans into public notice.

_Renkioi Hospital._

In February 1855, after the first winter of the allied armies in the Crimea, Mr. Brunel was asked by the War Department to undertake the design and construction of hospital buildings for the East.

He replied (on the same day that he received this application, February 16) that his 'time and best exertions would be, without any limitations, entirely at the service of Government.'

He was accordingly appointed as engineer, and proceeded to design and superintend the manufacture of the required buildings and all their internal arrangements. They were sent out under his supervision, and erected at Renkioi, on the Dardanelles. All use for the buildings was ended with the conclusion of peace; but, for the seven months during which they were occupied, they added much to the comfort of more than thirteen hundred sick and wounded soldiers.

Many of the special arrangements adopted at Mr. Brunel's suggestion have been since brought into general use; and the success of these buildings was, to a considerable extent, influential in leading the Americans to construct similar hospitals during their civil war. These are now (1870) being copied in the German armies.

The history of the Renkioi hospital buildings is a striking instance of the zeal with which Mr. Brunel entered into any undertaking which had a claim upon his a.s.sistance, of the varied experience and fertility of invention which he could bring to bear upon any subject, however remote it might seem to be from his ordinary occupations, and of the minute personal attention he was accustomed to give to every detail, as the only certain means of ensuring success.

Mr. Brunel entered upon his duties on February 16, and reported to the War Office on March 5 that he had not lost any time nor spared any exertion or any means in his power to forward the important business he had undertaken. He stated that he availed himself freely of the advice and a.s.sistance of all persons to whom he could apply with any prospect of advantage; and he added, 'It is most gratifying to be able to state that from everybody I have received the most zealous and cordial a.s.sistance, and found it sufficient to mention the object of my enquiries to obtain immediately every a.s.sistance I could possibly require.'

An experimental ward was erected a few days afterwards on the premises of the Great Western Railway at Paddington, and was carefully criticised by competent persons; and, the plans having been approved of, specifications were made, with drawings of the various parts, and tenders were invited for the construction of the buildings.

The following paper gives a description of the buildings, and was written by Mr. Brunel in order to satisfy the curiosity of his friends:[l]--

March 1855.

The conditions that it was considered necessary to lay down in designing these buildings were,--

First. That they should be capable of adapting themselves to any plot of ground that might be selected, whatever its form, level, or inclination, within reasonable limits.

Secondly. That each set of buildings should be capable of being easily extended from one holding 500 patients to one for 1,000 or 1,500, or whatever might be the limit which sanitary or other conditions might prescribe.

Thirdly. That when erected they might be sure to contain every comfort which it would be possible under the circ.u.mstances to afford. And--

Fourthly. That they should be very portable, and of the cheapest construction.

The mode in which it has been sought to comply with these conditions is as follows:--[186]

The whole hospital will consist of a number of separate buildings, each sufficiently large to admit of the most economical construction, but otherwise small and compact enough to be easily placed on ground with a considerable slope, without the necessity of placing the floor of any part below the level of the ground, or of having any considerable height of foundation to carry up under any other part.

These separate buildings have been made all of the same size and shape; so that, with an indefinite length of open corridor to connect the various parts, they may be arranged in any form, to suit the levels and shape of the ground.

Each building, except those designed for stores and general purposes, is made to contain in itself all that is absolutely essential for an independent hospital ward-room; so that, by the lengthening of the corridors, and the addition of any number of these buildings, the hospital may be extended to any degree.

To ensure the necessary comforts, and particularly to provide against the contingency of any cargo of materials not arriving on the spot in time, each building contains within itself two ward-rooms, one nurse's room, a small store-room, bath-room, and surgery, water-closets, lavatories, and ventilating apparatus.

The ward-room is made wide enough and high enough to ensure a good s.p.a.ce of air to each bed, even if these should be unduly crowded.

Each building contains two ward-rooms, intended for twenty-six beds each, which is found in practice to be a size of room admitting of proper control and supervision.

With respect to closets and lavatories, after examining and considering everything that has been done, both in hospitals of the best description and poor-houses of the cheapest construction, it was found that the requisite security for cleanliness and the greatest amount of economy of labour, and of consumption of water, could be obtained by a cheap description of water-closet designed for the purpose; and with the same object of diminishing the amount of labour and the waste of water, and securing cleanliness without depending upon the constant attention of a.s.sistants, fixed basins for lavatories and mechanical appliances for supplying and drawing off water were adopted.

As a protection against heat, experience in hot climates and experiments made expressly for the purpose satisfactorily proved that a covering of extremely thin and highly polished tin, which reflects all direct rays of heat, was the cheapest, lightest, and most effective protection, and every piece of woodwork not covered with tin is to be whitewashed externally. Internally the lime-wash has a slight tint of colour, to take off the glare.[187]

To secure ventilation in a hot climate with low buildings extending over a large area, and therefore incapable of being connected with any general system of ventilation, it was considered that _forcing in_ fresh air by a small mechanical apparatus attached to each building would be the only effective means. Each ward-room is therefore furnished with a small fan, or rotatory air-pump, which, easily worked by one man, is found capable of supplying 1,000 to 1,500 cubic feet of air per minute, or 20 to 30 feet for each patient. This air is conveyed along the centre of the floors of each ward-room, and rising up under foot-boards placed under the tables, is found to flow over the floor to every part of the room.

Besides this mechanical supply of air, opening windows are provided along the whole length of the eaves, and s.p.a.ces left immediately beneath the roof at the two gables, amply sufficient together to ventilate the rooms thoroughly if any breezes are stirring, without the help of the fan.

The light is admitted by a long range of narrow windows, immediately under the eaves, which protect them from the direct rays of the sun. These windows open, and are provided with shutters inside, which exclude the light, but admit the air.

By forcing the air into the room, instead of drawing it out, the entrance of bad air from the closets, drains, or any surrounding nuisances is prevented. The fan is placed at the opposite end to the closets and drains; and all the fans being in the open corridor, the workmen can be seen by a single sentry, and kept to their work.

The buildings, as now constructed, are adapted to protect the interior from external heat. Should winter come while they are still in use, the framework is adapted to receive an internal lining of boarding, and the interstices can be filled with a non-conductor.

Two buildings, of the same form and dimensions, are fitted up with every convenience as store-rooms and apothecaries' dispensaries.

An iron kitchen, slightly detached from the wooden buildings, fitted up with every contrivance capable of cooking for from 500 to 1,000 patients, is attached.

A similar building of iron is fitted up with all the machinery lately introduced in the baths and washhouses of London for washing and drying in the minimum s.p.a.ce, and with the least amount of labour.

If an aggregate of buildings should be placed in one spot for more than 1,000 patients, a second kitchen would be added, but the single washhouse would be sufficient.

With each set of buildings is sent a pumping apparatus, a small general reservoir, and a sufficient length of main, with all its branches, to supply water to every detached building; and all the pipes and branches are of such construction as to admit of being put together without any soldering or cement. A system of drains is provided, formed of wooden trunks properly prepared, and of sufficient extent to form a complete and perfect system of drainage from every building to a safe distance from the general hospital.[188]

A number of small buildings, intended to be detached from the main body, are provided for residences for the officers and servants of the establishment, and for a small detachment of soldiers. A slaughter-house and store-yard and some other appurtenances are also provided, the extent of which depends on the circ.u.mstances of each case.

The construction of each building has been studied with very great care, so as to secure the minimum amount of material, the least possible amount of work in construction or erection, and the means of arranging all the parts in separate packages capable each of being carried by two men; and the result is that each building is the cheapest and lightest that has yet been constructed in proportion to the area covered.

For the transport of the materials to the spot selected, two sailing-vessels and three steamboats, capable of carrying one hospital for 1,000 men, which is the first about to be sent out, have been secured. In each vessel is sent a certain number of complete buildings, with every detail, including their proportion of water-pipes and drains, closets, lavatories, baths, &c., and a small amount of surplus material and tools; and in each of two separate vessels are sent a set of pumps and mains, and a kitchen and washhouse. So that by no accident, mistake, or confusion, short of the loss of several of the ships, can there fail to be a certain amount of hospital accommodation, provided with every comfort and essential.

The peculiar circ.u.mstances under which these establishments are likely to be placed have required not only peculiarities of construction, but these, in turn, have required numerous provisions and details specially designed for the case.

As all the buildings, except the kitchen and washhouse, are entirely constructed of wood, it is considered essential that no stove or fire-place of any description should be allowed in any part, except in the iron buildings; in these there is provision for an ample supply of hot water, but each ward-building is provided with a small boiler, heated by candles, which by experiment have been found amply sufficient for all that can be required. Candles are to be used exclusively for lighting, and lamps and lanterns have been constructed for the purpose.

A proper supply of fire-engines is provided, and other precautionary measures are adopted against fire.